首页 > 论文 > Photonics Research > 8卷 > 8期(pp:1388-1397)

Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The operation of quantum dot lasers epitaxially grown on silicon is investigated through a quantum-corrected Poisson-drift-diffusion model. This in-house developed simulation framework completes the traditional rate equation approach, which models the intersubband transitions involved into simultaneous ground-state and excited-state lasing, with a physics-based description of carrier transport and electrostatic effects. The code is applied to look into some of the most relevant mechanisms affecting the lasing operation. We analyze the impact of threading dislocations on non-radiative recombination and laser threshold current. We demonstrate that asymmetric carrier transport in the barrier explains the ground-state power quenching above the excited-state lasing threshold. Finally, we study p-type modulation doping and its benefits/contraindications. The observation of an optimum doping level, minimizing the ground-state lasing threshold current, stems from the reduction of the electron density, which counteracts the benefits from the expected increase of the hole density. This reduction is due to electrostatic effects hindering electron injection.

中国激光微信矩阵
补充资料

DOI:10.1364/PRJ.394076

所属栏目:Silicon Photonics

收稿日期:2020-04-03

录用日期:2020-06-23

网络出版日期:2020-06-23

作者单位    点击查看

Marco Saldutti:Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Alberto Tibaldi:Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Federica Cappelluti:Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Mariangela Gioannini:Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy

联系人作者:Marco Saldutti(mariangela.gioannini@polito.it)

【1】K. Nishi, K. Takemasa, M. Sugawara and Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 23, (2017).

【2】S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton and H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics. 10, 307-311(2016).

【3】Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert and D. V. Thourhout. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica. 4, 1468-1473(2017).

【4】A. Y. Liu and J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, (2018).

【5】J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard and J. E. Bowers. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt. Express. 25, 3927-3934(2017).

【6】Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau and J. E. Bowers. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica. 4, 940-944(2017).

【7】A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard and J. E. Bowers. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett. 42, 338-341(2017).

【8】D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard and J. E. Bowers. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett. 111, (2017).

【9】A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard and J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res. 3, B1-B9(2015).

【10】J. M. Gérard, O. Cabrol and B. Sermage. InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si. Appl. Phys. Lett. 68, 3123-3125(1996).

【11】Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty and H. Liu. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J. Lightwave Technol. 38, 240-248(2019).

【12】A. Markus, J. X. Chen, C. Parantho?n, A. Fiore, C. Platz and O. Gauthier-Lafaye. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 82, 1818-1820(2003).

【13】W. W. Chow and F. Jahnke. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron. 37, 109-184(2013).

【14】M. GioanniniM. Gioannini. Ground-state power quenching in two-state lasing quantum dot lasers. J. Appl. Phys. 111, (2012).

【15】V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko and M. V. Maximov. Analytical approach to the multi-state lasing phenomenon in quantum dot lasers. Appl. Phys. Lett. 102, (2013).

【16】H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers and F. Grillot. Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B. 35, 2780-2787(2018).

【17】P. M. Smowton and I. C. Sandall. Gain in p-doped quantum dot lasers. J. Appl. Phys. 101, (2007).

【18】V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina and A. E. Zhukov. Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss. Appl. Phys. Lett. 111, (2017).

【19】Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min and C. Zheng. Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes. ACS Photonics. 5, 1084-1093(2018).

【20】Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow and J. E. Bowers. Effects of modulation p doping in InAs quantum dot lasers on silicon. Appl. Phys. Lett. 113, (2018).

【21】M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi and F. Cappelluti. Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J. Photovoltaics. 3, 1271-1278(2013).

【22】A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu and F. Cappelluti. Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells. Int. J. Photoenergy. 2018, (2018).

【23】D. Gready and G. Eisenstein. Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 19, (2013).

【24】D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard and J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics. 5, 1094-1100(2018).

【25】D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard and J. E. Bowers. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express. 26, 7022-7033(2018).

【26】I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet and R. Manning. Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91, (2007).

【27】A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik and P. Debernardi. Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator. IEEE J. Sel. Top. Quantum Electron. 25, (2019).

【28】M. Yamaguchi, A. Yamamoto and Y. Itoh. Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 59, 1751-1753(1986).

【29】C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes and S. Ringel. Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates. Appl. Phys. Lett. 84, 3447-3449(2004).

【30】M. P. Lumb, M. A. Steiner, J. F. Geisz and R. J. Walters. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells. J. Appl. Phys. 116, (2014).

【31】L. A. Coldren, S. W. Corzine and M. L. Masanovic. A Phenomenological Approach to Diode Lasers. : Wiley, 45-90(2012).

【32】D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard and J. E. Bowers. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett. 112, (2018).

【33】M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni and M. Meneghini. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron. 26, (2020).

【34】A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen and A. Fiore. Impact of intraband relaxation on the performance of a quantum-dot laser. IEEE J. Sel. Top. Quantum Electron. 9, 1308-1314(2003).

【35】J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers and F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res. 7, 1222-1228(2019).

【36】J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard and J. E. Bowers. The importance of p-doping for quantum dot laser on silicon performance. IEEE J. Quantum Electron. 55, (2019).

引用该论文

Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, and Mariangela Gioannini, "Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach," Photonics Research 8(8), 1388-1397 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF