首页 > 论文 > 中国激光 > 47卷 > 6期(pp:602005--1)

陶瓷激光增材制造等离子体特征与成形缺陷的相关性研究

Correlation Between Plasma Characteristics and Forming Defects During Laser Additive Manufacturing of Ceramics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光谱强度与电子密度是陶瓷激光增材制造等离子体的两个重要特征。孔隙裂纹缺陷直接影响着陶瓷件的性能。搭建了等离子体监测平台,采用阈值分割法对孔隙缺陷进行提取。通过分析等离子体羽辉和谱线特征来研究工艺参数对等离子体谱线强度和电子密度的影响,得出了等离子体特征与成形缺陷具有相关性这一结论。试验结果表明:与金属材料相比,氧化铝陶瓷蒸气电离形成的等离子体羽辉喷发得更高,面积更大;等离子体谱线强度随激光功率和扫描速度的增大而升高,随送粉速率的增大而降低;电子密度随激光功率、扫描速度和送粉速率的增大而升高;在成形过程中,等离子体谱线强度、电子密度与孔隙、裂纹这两类成形缺陷均具有强相关性。

Abstract

Spectral intensity and electron density are two key features of plasma during the laser additive manufacturing of ceramics. Pore and crack defects significantly affect the performance of ceramic parts. We built a platform for plasma monitoring and extracted the porosity defect through a thresholding method. The effects of the process parameters on the plasma spectrum intensity and electron density were studied by analyzing the plasma plume and spectrum. The relationship between the plasma characteristics and the forming defects was then obtained. The experimental results show that both the ejection height and the plasma plume area formed by the ionization of the alumina ceramics steam were larger than those of metal materials. The plasma spectral intensity increased with the increase in the laser power and scanning speed, but decreased with the increase in the powder flow rate. The electron density increased with the increase in the laser power, scanning speed, and powder flow rate. During the forming process, the plasma spectral intensity and the electron density highly correlated with the pore and crack defects.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG148

DOI:10.3788/CJL202047.0602005

所属栏目:激光制造

基金项目:国家自然科学基金;

收稿日期:2019-11-15

修改稿日期:2019-12-11

网络出版日期:2020-06-01

作者单位    点击查看

刘安丽:湖南大学机械与运载工程学院, 湖南 长沙 410082智能激光制造湖南省重点实验室, 湖南 长沙 410082
隋长有:湖南大学机械与运载工程学院, 湖南 长沙 410082智能激光制造湖南省重点实验室, 湖南 长沙 410082
李发智:湖南大学机械与运载工程学院, 湖南 长沙 410082智能激光制造湖南省重点实验室, 湖南 长沙 410082
张屹:湖南大学机械与运载工程学院, 湖南 长沙 410082智能激光制造湖南省重点实验室, 湖南 长沙 410082

联系人作者:张屹(zy@hnu.edu.cn)

备注:国家自然科学基金;

【1】Li P, Li J L, Dong H G, et al. Metallurgical and mechanical properties of continuous drive friction welded copper/alumina dissimilar joints [J]. Materials & Design. 2017, 127: 311-319.

【2】Sapozhnikov S B, Kudryavtsev O A, Dolganina N. Experimental and numerical estimation of strength and fragmentation of different porosity alumina ceramics [J]. Materials & Design. 2015, 88: 1042-1048.

【3】Denry I, Holloway J. Ceramics fordental applications: a review [J]. Materials. 2010, 3(1): 351-368.

【4】Ashley S. Rapid prototyping systems [J]. Mechanical Engineering. 1991, 113(4): 34-43.

【5】Deckers J, Vleugels J, Kruth J P. Additive manufacturing of ceramics: a review [J]. Journal of Ceramic Science and Technology. 2014, 5(4): 245-60.

【6】Zocca A, Colombo P, Gomes C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities [J]. Journal of the American Ceramic Society. 2015, 98(7): 1983-2001.

【7】Xin J J, Fang C, Yang W X, et al. Study on cracks and microstructures of IC10 single crystal superalloys by laser welding [J]. Chinese Journal of Lasers. 2018, 45(8): 0802002.
信纪军, 方超, 杨武雄, 等. IC10单晶高温合金激光焊裂纹及显微组织的研究 [J]. 中国激光. 2018, 45(8): 0802002.

【8】Li L Q, Meng S H, Peng J. Analysis of correlation between bubble motion and weld porosity in laser welding of aluminum alloy [J]. Transactions of the China Welding Institution. 2018, 39(6): 1-6.
李俐群, 孟圣昊, 彭进. 铝合金激光焊接熔池中气泡运动与气孔相关性分析 [J]. 焊接学报. 2018, 39(6): 1-6.

【9】Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: materials and applications [J]. Applied Physics Reviews. 2015, 2(4): 041101.

【10】Fan Z Q, Lu M Y, Huang H. Selective laser melting of alumina: a single track study [J]. Ceramics International. 2018, 44(8): 9484-9493.

【11】Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature. 2017, 549(7672): 365-369.

【12】Chen J, Lin X, Wang T, et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process [J]. Rare Metal Materials and Engineering. 2003, 32(3): 183-186.
陈静, 林鑫, 王涛, 等. 316L不锈钢激光快速成形过程中熔覆层的热裂机理 [J]. 稀有金属材料与工程. 2003, 32(3): 183-186.

【13】Zhou X, Li K, Zhang D D, et al. Textures formed in a CoCrMo alloy by selective laser melting [J]. Journal of Alloys and Compounds. 2015, 631: 153-164.

【14】Liu J, Li Z, Shi Y, et al. Effect of laser-arc distance on surface flow of laser-GMAW hybrid welding molten pool [J]. Chinese Journal of Lasers. 2018, 45(10): 1002004.
刘佳, 李忠, 石岩, 等. 光丝距对激光-电弧复合焊接熔池表面流动的影响 [J]. 中国激光. 2018, 45(10): 1002004.

【15】Wang J. Study on the technology and plasma behaviour during the fiber laser and laser hybrid welding of aluminum alloy [D]. Wuhan: Huazhong University of Science and Technology. 2012, 57-110.
王军. 铝合金光纤激光及其复合焊接的等离子体行为与工艺研究 [D]. 武汉: 华中科技大学. 2012, 57-110.

【16】Wang X Y, Sun Q, Wang W, et al. Study on the changing ruler of plasma in laser welding and the quick testing method of blowhole defects: integral analysis method for signals detection [J]. Transactions of the China Welding Institution. 2016, 37(3): 45-48.
王旭友, 孙谦, 王威, 等. 激光焊接中的等离子体变化规律及气孔缺陷快速测试方法: 检测信号整体分析方法 [J]. 焊接学报. 2016, 37(3): 45-48.

【17】Harooni M, Carlson B, Kovacevic R. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis [J]. Optics and Lasers in Engineering. 2014, 56: 54-66.

【18】Chen B, Yao Y Z, Tan C W, et al. Investigation of the correlation between plasma electron temperature and quality of laser additive manufacturing process [M]. ∥Chen S, Zhang Y, Feng Z. Transactions on Intelligent Welding Manufacturing. Singapore: Springer Singapore. 2017, 60-74.

【19】Shaikh N M, Rashid B, Hafeez S, et al. Measurement of electron density and temperature of a laser-induced zinc plasma [J]. Journal of Physics D: Applied Physics. 2006, 39(7): 1384-1391.

【20】Cowpe J S, Pilkington R D, Astin J S, et al. The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology [J]. Journal of Physics D: Applied Physics. 2009, 42(16): 165202.

【21】Abdellatif G, Imam H. A study of the laser plasma parameters at different laser wavelengths [J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2002, 57(7): 1155-1165.

【22】Lu C, Lin Q D, Li B, et al. Effect of powder feeding rate on heat and mass transfer behaviors during filler powder laser welding [J]. Optics & Laser Technology. 2019, 120: 105711.

【23】Sibillano T. RizziD, Ancona A, et al. Spectroscopic monitoring of penetration depth in CO2 Nd∶YAG and fiber laser welding processes [J]. Journal of Materials Processing Technology. 2012, 212(4): 910-916.

引用该论文

Liu Anli,Sui Changyou,Li Fazhi,Zhang Yi. Correlation Between Plasma Characteristics and Forming Defects During Laser Additive Manufacturing of Ceramics[J]. Chinese Journal of Lasers, 2020, 47(6): 0602005

刘安丽,隋长有,李发智,张屹. 陶瓷激光增材制造等离子体特征与成形缺陷的相关性研究[J]. 中国激光, 2020, 47(6): 0602005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF