首页 > 论文 > 光学学报 > 39卷 > 12期(pp:1214002--1)

基于反共振空芯光纤的4.3 μm二氧化碳激光器

Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于充有二氧化碳气体反共振空芯光纤的新型中红外光纤激光器。用一个掺铥光纤放大的可调谐2 μm半导体激光器泵浦一段长为5 m、充有低压二氧化碳的低损耗反共振空芯光纤,基于粒子数反转实现了单程结构4.3 μm光纤激光输出,这是已经报道的常温下连续波光纤激光输出的最长波长(超连续谱激光除外)。气压为500 Pa时,R(30)吸收线对应的最大激光输出功率为82 mW,斜率效率约为6.8%(相对耦合进入空芯光纤的泵浦功率);R(28)吸收线对应的最大输出功率为63 mW,斜率效率约为5%。该研究为实现高效紧凑的4 μm中红外激光器提供了一条简单可行的技术途径。

Abstract

A novel mid-infrared fiber laser is reported based on an anti-resonant hollow-core fiber filled with carbon dioxide gas. A tunable 2-μm semiconductor laser amplified using a thulium-doped fiber is used to pump a low-loss anti-resonant hollow-core fiber with a length of 5 m, which is filled with carbon dioxide gas at low pressure. Particle beam inversion is responsible for obtaining the single-pass fiber laser output at 4.3 μm, which is the longest wavelength that has yet been reported for continuous wave fiber lasers at normal temperature, except for supercontinuum lasers. At a pressure of 500 Pa, the maximum laser output power of the R(30) absorption line is 82 mW and the slope efficiency is approximately 6.8% (relatively coupled pump power entering the hollow-core fiber), whereas the maximum laser output power of the R(28) absorption line is 63 mW and the slope efficiency is approximately 5%. This study provides a potentially effective pathway for obtaining compact and efficient 4-μm fiber gas lasers.

广告组5 - 光束分析仪
补充资料

中图分类号:TN24

DOI:10.3788/AOS201939.1214002

所属栏目:激光器与激光光学

基金项目:国家自然科学基金面上项目、湖南省自然科学基金杰出青年科学基金;

收稿日期:2019-07-08

修改稿日期:2019-08-13

网络出版日期:2019-12-01

作者单位    点击查看

崔宇龙:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
周智越:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
黄威:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
李智贤:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
王泽锋:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073

联系人作者:王泽锋(zefengwang_nudt@163.com)

备注:国家自然科学基金面上项目、湖南省自然科学基金杰出青年科学基金;

【1】Jackson S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nature Photonics. 2012, 6(7): 423-431.

【2】Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers [J]. Laser Physics. 2012, 22(11): 1744-1751.

【3】Chang T, Wood O. An optically pumped CO2 laser [J]. IEEE Journal of Quantum Electronics. 1972, 8(6): 598.

【4】Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser [J]. IEEE Journal of Quantum Electronics. 1994, 30(10): 2395-2400.

【5】Nampoothiri A V V, Ratanavis A, Campbell N, et al. . Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band [J]. Optics Express. 2010, 18(3): 1946-1951.

【6】Fedorov V V, Mirov S B, Gallian A, et al. 3.77-5.05-μm tunable solid-state lasers based on Fe 2+-doped ZnSe crystals operating at low and room temperatures [J]. IEEE Journal of Quantum Electronics. 2006, 42(9): 907-917.

【7】Vurgaftman I, Meyer J R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers [J]. Journal of Applied Physics. 2006, 99(12): 123108.

【8】Jiang X, Joly N Y, Finger M A, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre [J]. Nature Photonics. 2015, 9(2): 133-139.

【9】Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm [J]. Optics Letters. 2015, 40(12): 2882-2885.

【10】Woodward R I, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency [J]. Optics Letters. 2018, 43(7): 1471-1474.

【11】Maes F, Fortin V, Bernier M, et al. 5.6 W monolithic fiber laser at 3.55 μm [J]. Optics Letters. 2017, 42(11): 2054-2057.

【12】Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser [J]. Optics Letters. 2016, 41(7): 1676-1679.

【13】Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm [J]. Optica. 2018, 5(7): 761-764.

【14】Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air [J]. Science. 1999, 285(5433): 1537-1539.

【15】Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber [J]. Optics Letters. 2006, 31(24): 3574-3576.

【16】Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm [J]. Optics Express. 2011, 19(2): 1441-1448.

【17】Yu F, Knight J C. Negative curvature hollow-core optical fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2016, 22(2): 146-155.

【18】Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science. 2002, 298(5592): 399-402.

【19】Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering [J]. Laser Physics Letters. 2014, 11(10): 105807.

【20】Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth [J]. Optics Letters. 2016, 41(21): 5118-5121.

【21】Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm [J]. Optics Letters. 2018, 43(19): 4671-4674.

【22】Astapovich M S, Gladyshev A V, Khudyakov M M, et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber [J]. IEEE Photonics Technology Letters. 2019, 31(1): 78-81.

【23】Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. . Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited] [J]. Optical Materials Express. 2012, 2(7): 948-961.

【24】Wang Z F, Belardi W, Yu F, et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber [J]. Optics Express. 2014, 22(18): 21872-21878.

【25】Hassan M R A, Yu F, Wadsworth W J, et al. . Cavity-based mid-IR fiber gas laser pumped by a diode laser [J]. Optica. 2016, 3(3): 218-221.

【26】Wang Z F, Yu F, Wadsworth W J, et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser [J]. Acta Optica Sinica. 2014, 34(8): 0814004.
王泽锋, 于飞, Wadsworth W J, 等. 单程高增益1.9 μm光纤气体拉曼激光器 [J]. 光学学报. 2014, 34(8): 0814004.

【27】Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source [J]. Acta Optica Sinica. 2016, 36(5): 0506002.
陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源 [J]. 光学学报. 2016, 36(5): 0506002.

【28】Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering [J]. Acta Optica Sinica. 2016, 36(8): 0806005.
顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联SRS的红绿蓝色激光 [J]. 光学学报. 2016, 36(8): 0806005.

【29】Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier [J]. Acta Optica Sinica. 2017, 37(5): 0514002.
陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器 [J]. 光学学报. 2017, 37(5): 0514002.

【30】Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source [J]. Optics Letters. 2017, 42(20): 4055-4058.

【31】Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers [J]. Optics Express. 2018, 26(15): 19144-19153.

【32】Aghbolagh F B A, Nampoothiri V, Debord B, et al. . Mid IR hollow core fiber gas laser emitting at 4.6 μm [J]. Optics Letters. 2019, 44(2): 383-386.

【33】The HITRAN database [2019-07-07].http:∥hitran.org/.[2019-07-07]. 0.

【34】Yi H M, Liu Q N, Gameson L, et al. High-accuracy 12C 16O2 line intensities in the 2 μm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018, 206: 367-377.

【35】Herzberg G. Spinks J W T. Molecular spectra and molecular structure: diatomic molecules [M]. New York: Prentice-Hall. 1939.

【36】Jones A M, Fourcade-Dutin C, Mao C, et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers [J]. Proceedings of SPIE. 2012, 8237: 82373Y.

【37】Gu B, Chen Y B, Wang Z F. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering [J]. Optical Engineering. 2016, 55(12): 126114.

【38】Siegman A E. Lasers [M]. California: University Science Books. 1986.

引用该论文

Cui Yulong,Zhou Zhiyue,Huang Wei,Li Zhixian,Wang Zefeng. Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002

崔宇龙,周智越,黄威,李智贤,王泽锋. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002

被引情况

【1】周智越,李昊,崔宇龙,黄威,王泽锋. 基于空芯光纤的光泵浦4 μm连续波HBr气体激光器. 光学学报, 2020, 40(16): 1614001--1

【2】王梦玲,高寿飞,汪滢莹,王璞. 紫外空芯反谐振光纤的研制. 中国激光, 2020, 47(8): 806002--1

【3】王泽锋,周智越,崔宇龙,黄威,李智贤,李昊. 光纤气体激光光源研究进展及展望(Ⅱ): 基于粒子数反转. 中国激光, 2021, 48(4): 401009--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF