首页 > 论文 > 中国激光 > 47卷 > 4期(pp:402009--1)

道岔尖轨表面的激光熔覆铁基耐磨涂层及其性能

Fe-Based Wear-Resistant Coating on Railroad Switch Prepared Using Laser Cladding Technology and Its Properties

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

尖轨作为道岔的重要部件,工作环境恶劣,易出现表面磨损、剥离掉块等缺陷。激光熔覆技术可以显著提高尖轨表面的硬度,从而提高其表面耐磨性,减少表面伤损,延长尖轨的使用寿命。采用半导体激光熔覆工艺,在U71Mn道岔尖轨表面制备了Fe-W-Cr铁基复合激光熔覆层,对熔覆层的组织形貌、物相组成及元素分布进行了检测,并对其硬度、冲击性能与摩擦磨损性能进行了分析。结果表明:铁基熔覆层无明显缺陷,且与道岔尖轨形成了冶金结合,熔覆层内大部分区域为树枝晶,在晶界处分布着网状碳化物;熔覆层的平均硬度为876.8 HV(道岔尖轨用钢为252.3 HV),冲击韧度为2.30 J/cm 2,平均摩擦因数为0.31(道岔尖轨用钢为0.63);在同等的摩擦磨损条件下,铁基熔覆层的磨损量为0.0043 g,仅为道岔尖轨用钢(0.0408 g)的10.54%。半导体激光熔覆工艺使得道岔尖轨表面的硬度及耐磨性能得到了显著提高,从而使其服役性能得到了明显改善。

Abstract

The railroad switch is an important part of turnouts. The surface of the switch rail could be easily worn and peeled because of its poor working condition. Laser cladding technology can significantly improve the surface hardness of the railroad switch, and the wear and surface damage resistance as well as service life are accordingly improved. A Fe-W-Cr composite coating was successfully prepared on the surface of U71Mn railroad switch using high-power semiconductor laser cladding technology. The microstructures, phase formation and elemental distribution of the coating were tested, and the hardness, impact toughness, and friction and wear properties of the coating were analyzed. Results show that there is no pore, crack or other defect in the coatings, and the metallurgical bonding between the coatings and the substrates are effectively established. The dendrite structures exist in most of the region on the coating, and networks of carbides are distributed around the grain boundaries. The average hardness of the coatings is 876.8 HV (the hardness of railroad switch rail is 252.3 HV), the impact toughness is 2.30 J/cm 2, and the friction coefficient is 0.31(the friction coefficient of railroad switch rail is 0.63). Under the same friction and wear condition, the wear loss of the coating is 0.0043 g, which is only 10.54% of the substrate (the wear loss of substrate is 0.0408 g). The hardness and wear resistance of the railroad switch are significantly enhanced using laser cladding, effectively improving its service life.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG174.44

DOI:10.3788/CJL202047.0402009

所属栏目:激光制造

收稿日期:2019-07-16

修改稿日期:2019-11-19

网络出版日期:2020-04-01

作者单位    点击查看

李英男:中国铁路沈阳局集团有限公司科学技术研究所, 辽宁 沈阳 110013
李铸国:上海交通大学上海市激光制造与材料改性重点实验室, 上海 200240
王晓翔:上海岳乾激光有限公司, 上海 200240
徐翔:上海岳乾激光有限公司, 上海 200240

联系人作者:李铸国(lizg@sjtu.edu.cn)

【1】Luo G W. Talking about the cause analysis and remedy of SC330 turnout disease Management Observer[J]. 0, 2010(12): 154-155.
罗国旺. 浅谈SC330道岔病害的原因分析及整治 管理观察[J]. 0, 2010(12): 154-155.

【2】Lu G J, Yang K. The morphological characteristics and failure mechanism of rail damage [J]. Journal of the China Railway Society. 1996, 18(3): 120-124.
卢观健, 杨克. 钢轨伤损的形态特征及其失效机理 [J]. 铁道学报. 1996, 18(3): 120-124.

【3】Li J H, Ding W, Li L, et al. Analysis of common failure modes and characteristics of heavy haul rail welded joint [J]. Welding Technology. 2016, 45(12): 69-73.
李金华, 丁韦, 李力, 等. 重载线钢轨焊接接头常见失效形式及特征分析 [J]. 焊接技术. 2016, 45(12): 69-73.

【4】Franklin F J, Weeda G J, Kapoor A, et al. Rolling contact fatigue and wear behaviour of the infrastar two-material rail [J]. Wear. 2005, 258(7/8): 1048-1054.

【5】Song L P. Laser surface modification and application [J]. Physics and Engineering. 2010, 20(4): 42-44.
宋立平. 激光表面改性及其应用 [J]. 物理与工程. 2010, 20(4): 42-44.

【6】Zhang T G, Zhuang H F, Xiao H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer [J]. Chinese Journal of Lasers. 2019, 46(9): 0903001.
张天刚, 庄怀风, 肖海强, 等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响 [J]. 中国激光. 2019, 46(9): 0903001.

【7】Wang D S, Tian Z J, Shen L D, et al. Research status and development of laser cladding technology [J]. Applied Laser. 2012, 32(6): 538-544.
王东生, 田宗军, 沈理达, 等. 激光熔覆技术研究现状及其发展 [J]. 应用激光. 2012, 32(6): 538-544.

【8】Li X W, Zhang C H, Zhang S, et al. Developments of laser cladding technology [J]. Laser Journal. 2007, 28(2): 1-2.
李晓薇, 张春华, 张松, 等. 激光熔覆技术的研究进展 [J]. 激光杂志. 2007, 28(2): 1-2.

【9】Fu Z K, Wang W J, Ding H H, et al. Effect of laser cladding Fe-based alloy on wear performance of wheel and rail steels [J]. Transactions of Materials and Heat Treatment. 2015, 36(8): 217-222.
付志凯, 王文健, 丁昊昊, 等. 激光熔覆铁基合金对轮轨材料磨损与损伤性能的影响 [J]. 材料热处理学报. 2015, 36(8): 217-222.

【10】Lewis S R, Lewis R. Fletcher D I. Assessment of laser cladding as an option for repairing/enhancing rails. Wear[J]. 2015, 330/331: 581-591.

【11】Hu J, Guo H M, Wang W J, et al. Effect of laser cladding on friction and wear properties of wheel/rail materials Lubrication Engineering[J]. 0, 2012(9): 51-55.
胡杰, 郭火明, 王文健, 等. 激光熔覆对轮轨材料摩擦磨损性能的影响 润滑与密封[J]. 0, 2012(9): 51-55.

【12】Wang X R, Wang X H, Shi G W, et al. Effect of boron element on the microstructure and property of laser cladding Fe-Ti-V-C alloy system [J]. Chinese Journal of Lasers. 2010, 37(7): 1903-1907.
王晓荣, 王新洪, 侍国文, 等. 硼对激光熔覆Fe-Ti-V-C合金系组织和性能的影响 [J]. 中国激光. 2010, 37(7): 1903-1907.

【13】Maroli B, Dizdar S, Bengtsson S. Iron based hardfacing alloys for abrasive and impact wear [C]. International Thermal Spray Conference. 2017.

【14】Darmawan W, Quesada J, Rossi F, et al. Improvement in wear characteristics of the AISI M2 by laser cladding and melting [J]. Journal of Laser Applications. 2009, 21(4): 176-182.

【15】Zhang X H, Chao M J, Liang E J, et al. In-situ synthesis of TiC-ZrC particulate reinforced Ni-based composite coatings by laser cladding [J]. Chinese Journal of Lasers. 2009, 36(4): 998-1004.
张现虎, 晁明举, 梁二军, 等. 激光熔覆原位生成TiC-ZrC颗粒增强镍基复合涂层 [J]. 中国激光. 2009, 36(4): 998-1004.

【16】Cui Z Q. Metallurgy and heat treatment: professional use of casting and welding[M]. Beijing: China Machine Press, 1998, 32-59.
崔忠圻. 金属学与热处理: 铸造、焊接专业用[M]. 北京: 机械工业出版社, 1998, 32-59.

【17】Günter E, Ilyenko S . Ternary alloy systems [M]. [S.l.]: Springer Berlin Heidelberg. 2008, 279-302.

【18】Dong R J. Metallurgical principle[M]. Beijing: , 1980.

【19】Lentz J, R?ttger A, Theisen W. Mechanism of the Fe3(B, C) and Fe23(C, B)6 solid-state transformation in the hypoeutectic region of the Fe-C-B system [J]. Acta Materialia. 2016, 119: 80-91.

【20】Boccalini M, Goldenstein H. Solidification of high speed steels [J]. International Materials Reviews. 2001, 46(2): 92-115.

【21】Niu H J. Chang I T H. Microstructural evolution during laser cladding of M2 high-speed steel [J]. Metallurgical and Materials Transactions A. 2000, 31(10): 2615-2625.

【22】Santhanam A T, Tierney P, Hunt J L. Cemented carbides [M]. ∥Properties and selection: nonferrous alloys and special-purpose materials. America: ASM International. 1990, 2: 950-977.

【23】Gauthier M M. Crystallography and engineering properties of ceramics [M]. ∥Engineered materials handbook desk edition. America: ASM International. 1995, 922-975.

【24】Hu G X, Cai X, Rong Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2000, 167-223.
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000, 167-223.

引用该论文

Li Yingnan,Li Zhuguo,Wang Xiaoxiang,Xu Xiang. Fe-Based Wear-Resistant Coating on Railroad Switch Prepared Using Laser Cladding Technology and Its Properties[J]. Chinese Journal of Lasers, 2020, 47(4): 0402009

李英男,李铸国,王晓翔,徐翔. 道岔尖轨表面的激光熔覆铁基耐磨涂层及其性能[J]. 中国激光, 2020, 47(4): 0402009

被引情况

【1】白杨,王振华,左娟娟,姜秀杰,张学卿. 激光熔覆制备铁基复合涂层及其耐热耐蚀性能. 中国激光, 2020, 47(10): 1002001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF