首页 > 论文 > 激光与光电子学进展 > 57卷 > 5期(pp:52204--1)

衍射微透镜注塑成型工艺参数优化及误差补偿

Parameter Optimization and Error Compensation of Diffraction Microlens Injection Molding Process

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了制造高精度塑料衍射微透镜,提出采用Taguchi方法在大范围内选择工艺参数,通过信噪比确定显著影响微结构成型精度的工艺参数,并通过加权综合评分法进行多目标优化获得最优参数组合。结果表明保压压力、模具温度和保压时间对微结构成型精度具有显著影响。为了提高衍射微结构成型精度,分析了衍射微透镜注塑成型误差的主要来源并建立了误差补偿模型。实验结果表明注塑成型的衍射微结构高度误差为5.69%,周期宽度误差为6.16%,衍射微结构的注塑成型精度获得显著提高。

Abstract

In order to manufacture high-precision plastic diffraction microlenses, this paper proposes to select the process parameters in a wide range by Taguchi method, determine the process parameters that significantly affect the molding precision of microstructure through the signal-to-noise ratio, and obtain the optimal parameter combination through multi-objective optimization by weighted comprehensive scoring method. The results show that the holding pressure, mold temperature, and holding time have a significant impact on the microstructure molding precision. In order to improve the precision of diffraction microstructure, the main source of diffraction microlens injection molding error is analyzed and the error compensation model is established. The experimental results show that the diffraction microstructure of the injection molding has a height error of 5.69% and a period error of 6.16%, and the injection molding precision of the diffraction microstructure is significantly improved.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/LOP57.052204

所属栏目:光学设计与制造

基金项目:吉林省重点科技研发项目;

收稿日期:2019-11-27

修改稿日期:2019-12-24

网络出版日期:2020-03-01

作者单位    点击查看

刘兴国:长春理工大学光电工程学院, 吉林 长春130022
霍富荣:长春理工大学光电工程学院, 吉林 长春130022
薛常喜:长春理工大学光电工程学院, 吉林 长春130022

联系人作者:薛常喜(xcx272479@sina.com)

备注:吉林省重点科技研发项目;

【1】Liu X Q, Xue C X. Design of diffractive optical elements based on axicon and its light analysis [J]. Laser & Optoelectronics Progress. 2018, 55(4): 040501.
刘晓庆, 薛常喜. 基于轴棱锥的衍射光学元件设计及其光场分析 [J]. 激光与光电子学进展. 2018, 55(4): 040501.

【2】Li L X, Liu Q, Chen J M, et al. Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system [J]. Optics Communications. 2017, 385: 97-103.

【3】Cui Q F. Design of hybrid diffractive-refractive imaging optical systems [J]. Infrared and Laser Engineering. 2006, 35(1): 12-15, 38.
崔庆丰. 折衍射混合成像光学系统设计 [J]. 红外与激光工程. 2006, 35(1): 12-15, 38.

【4】Wang D Y, Xue C X, Li C, et al. Design of electronic endoscope optical system based on microlens array [J]. Acta Optica Sinica. 2018, 38(2): 0222003.
王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计 [J]. 光学学报. 2018, 38(2): 0222003.

【5】Wang Y, Meng X Y, Zhang L, et al. Design of super-wide-angle mobile phone camera based on concentric lens [J]. Acta Optica Sinica. 2018, 38(10): 1022001.
王洋, 孟祥月, 张磊, 等. 基于同心透镜的超广角手机镜头设计 [J]. 光学学报. 2018, 38(10): 1022001.

【6】Carvalho E J, Braga E S. Cescato L H D. Replication of diffractive optical elements by injection molding [J]. Proceedings of SPIE. 2004, 5622: 739-744.

【7】Holthusen A K, Riemer O, Schmütz J, et al. Mold machining and injection molding of diffractive microstructures [J]. Journal of Manufacturing Processes. 2017, 26: 290-294.

【8】Lee B K, Kim D S, Kwon T H. Replication of microlens arrays by injection molding [J]. Microsystem Technologies. 2004, 10(6/7): 531-535.

【9】Vu L T. Chen C C A, Lee C C, et al. Compensating additional optical power in the central zone of a multifocal contact lens for minimization of the shrinkage error of the shell mold in the injection molding process [J]. Applied Optics. 2018, 57(12): 2981-2991.

【10】Lan X R, Li C, Yang C, et al. Optimization of injection molding process parameters and axial surface compensation for producing an aspheric plastic lens with large diameter and center thickness [J]. Applied Optics. 2019, 58(4): 927-934.

【11】Chen C C A, Lai C S, Yu C W, et al. Study on liquid crystal polymer molding for off-axial aspherical reflective grating optical element by injection molding process [C]. AIP Conference Proceedings. 2019, 2065: 030008.

【12】Kalima V, Pietarinen J, Siitonen S, et al. Transparent thermoplastics: replication of diffractive optical elements using micro-injection molding [J]. Optical Materials. 2007, 30(2): 285-291.

【13】Yang H F, Xue C X. Diffraction efficiency evaluation for diamond turning of multilayer diffractive optical elements [J]. Optical Engineering. 2017, 56(7): 075101.

【14】Kashyap S, Datta D. Process parameter optimization of plastic injection molding: a review [J]. International Journal of Plastics Technology. 2015, 19(1): 1-18.

【15】Dick L, Risse S, Tünnermann A. Process influences and correction possibilities for high precision injection molded freeform optics [J]. Advanced Optical Technologies. 2016, 5(4): 277-287.

【16】Yang H F. Studies on modified scalar diffraction theory of multilayer diffractive optical elements [D]. Changchun: Changchun University of Science and Technology. 2018.
杨红芳. 多层衍射光学元件的标量衍射理论修正模型研究 [D]. 长春: 长春理工大学. 2018.

引用该论文

Liu Xingguo,Huo Furong,Xue Changxi. Parameter Optimization and Error Compensation of Diffraction Microlens Injection Molding Process[J]. Laser & Optoelectronics Progress, 2020, 57(5): 052204

刘兴国,霍富荣,薛常喜. 衍射微透镜注塑成型工艺参数优化及误差补偿[J]. 激光与光电子学进展, 2020, 57(5): 052204

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF