Photonics Research, 2020, 8 (4): 04000601, Published Online: Mar. 31, 2020  

Superconducting nanowire multi-photon detectors enabled by current reservoirs Download: 574次

Author Affiliations
1 School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
Abstract
Single-photon detectors are ubiquitous devices in quantum-photonic-based communication, computation, metrology, and sensing. In these applications, N-fold coincidence photon counting is often needed, for example, to characterize entanglement. However, N-fold coincidence photon counting typically requires N individual single-photon detectors and associated bias and readout electronics, and these resources could become prohibitive if N goes large and the detectors need to work at cryogenic temperatures. Here, to break this limit on N, we propose a device architecture based on N cascaded photosensitive superconducting nanowires and one wider nanowire that functions as a current reservoir. We show that by strategically designing the device, the network of these superconducting nanowires can work in a synergic manner as an n-photon detector, where n can be from 1 to N, depending on the bias conditions. We therefore name the devices of this type superconducting nanowire multi-photon detectors (SNMPDs). In addition to its simple one-port bias and readout circuitry, the coincidences are counted internally in the detector, eliminating the need for external multi-channel, time-correlated pulse counters. We believe that the SNMPDs proposed in this work could open avenues towards conveniently measuring high-order temporal correlations of light and characterizing multi-photon entanglement.

Kai Zou, Yun Meng, Zhao Wang, Xiaolong Hu. Superconducting nanowire multi-photon detectors enabled by current reservoirs[J]. Photonics Research, 2020, 8(4): 04000601.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!