首页 > 论文 > 中国激光 > 47卷 > 7期(pp:702003--1)

激光直写制备完美涡旋光束微波带片

Fabrication of Perfect Vortex Beam Microplate Using Direct Laser Writing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

完美涡旋光束的涡旋半径与拓扑荷数无关,且携带有轨道角动量,这使得完美涡旋光束在光学通信、量子光学以及激光制造等领域被广泛应用。利用双光子聚合的激光直写技术制备出了可产生完美涡旋光束的径向相移螺旋型波带片。通过改变波带片的径向相移控制参数,实现了对完美涡旋光束涡旋半径的调控。同时,通过干涉图样验证了涡旋光束携带的轨道角动量与设计的拓扑荷数相吻合。本工作可为光子芯片集成的快速设计制造提供一定参考。

Abstract

Vortex radii of perfect vortex beams are independent of the topological charge and carry orbital angular momentum, and these beams have wide applications in optical communications, quantum optics, and laser manufacturing. In this study, radial phase-shifted spiral zone plates that can generate perfect vortex beams have been fabricated using two-photon photopolymerization direct laser writing. The vortex radii of perfect vortex beams are adjusted by changing the control parameter of the radial phase-shift. Moreover, interference patterns verify that the orbital angular momentum carried by vortex beams is consistent with the designed topological charge. Thus, this study can provide a reference for the rapid design and manufacture of photonic chip integration.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0702003

所属栏目:激光制造

基金项目:中央高校基本科研业务费专项资金、上海交通大学区域光纤通信网与新型光通信系统国家重点实验室开放基金;

收稿日期:2020-01-15

修改稿日期:2020-02-26

网络出版日期:2020-07-01

作者单位    点击查看

秦燕亮:华中科技大学光学与电子信息学院, 湖北 武汉 430074
黄轶:华中科技大学光学与电子信息学院, 湖北 武汉 430074
涂谱:华中科技大学光学与电子信息学院, 湖北 武汉 430074
张琦:华中科技大学光学与电子信息学院, 湖北 武汉 430074
赵茗:华中科技大学光学与电子信息学院, 湖北 武汉 430074
杨振宇:华中科技大学光学与电子信息学院, 湖北 武汉 430074

联系人作者:赵茗(zhaoming@hust.edu.cn); 杨振宇(zyang@hust.edu.cn);

备注:中央高校基本科研业务费专项资金、上海交通大学区域光纤通信网与新型光通信系统国家重点实验室开放基金;

【1】Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A. 1992, 45(11): 8185.Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A. 1992, 45(11): 8185.

【2】Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics. 2012, 6(7): 488-496.

【3】Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres [J]. Nature Photonics. 2013, 7(5): 354-362.

【4】Albaladejo S, Marqués M I, Laroche M, et al. Scattering forces from the curl of the spin angular momentum of a light field [J]. Physical Review Letters. 2009, 102(11): 113602.

【5】Hiesmayr B, de Dood M, L?ffler W. Observation of four-photon orbital angular momentum entanglement [J]. Physical Review Letters. 2016, 116(7): 073601.

【6】Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta [J]. Science. 2012, 338(6107): 640-643.

【7】Ramachandran S, Gregg P, Kristensen P, et al. On the scalability of ring fiber designs for OAM multiplexing [J]. Optics Express. 2015, 23(3): 3721-3730.

【8】Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam [J]. Optics Letters. 2013, 38(22): 4919-4922.

【9】Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator [J]. Optics Letters. 2013, 38(4): 534-536.

【10】Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam [J]. Optics Letters. 2015, 40(4): 597-600.

【11】Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device [J]. Applied Optics. 2015, 54(27): 8030-8035.

【12】Anaya Carvajal N, Acevedo C H, Torres Moreno Y. Generation of perfect optical vortices by using a transmission liquid crystal spatial light modulator [J]. International Journal of Optics. 2017, 2017: 1-10.

【13】Sabatyan A, Behjat Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex [J]. Optical and Quantum Electronics. 2017, 49(11): 371.

【14】Liu Y C, Ke Y G, Zhou J X, et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements [J]. Scientific Reports. 2017, 7: 44096.

【15】Zhang Y C, Liu W W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces [J]. Advanced Optical Materials. 2018, 6(4): 1701228.

【16】Zhu F Q, Huang S J, Shao W, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM) [J]. Optics Communications. 2017, 396: 50-57.

【17】Kuang Z, Perrie W, Edwardson S P, et al. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator [J]. Journal of Physics D: Applied Physics. 2014, 47(11): 115501.

【18】Arita Y, Chen M, Wright E M, et al. Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential [J]. Journal of the Optical Society of America B: Optical Physics. 2017, 34: C14-C19.

【19】Liang Y S, Lei M, Yan S H, et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex [J]. Applied Optics. 2018, 57(1): 79-84.

【20】Jabir M V, Apurv Chaitanya N, Aadhi A, et al. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons [J]. Scientific Reports. 2016, 6: 21877.

【21】Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives [J]. Nature Photonics. 2016, 10(8): 554-560.

【22】Dietrich P I, Blaicher M, Reuter I, et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration [J]. Nature Photonics. 2018, 12(4): 241-247.

【23】Jonu?auskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale [J]. Journal of Optics. 2018, 20(5): 053001.

【24】Jiang J, Liu J Q, Xu Y, et al. Laser direct writing technique of diffraction optical element on curved-surface substrate [J]. Chinese Journal of Lasers. 2017, 44(6): 0602002.
姜俊, 刘晋桥, 徐颖, 等. 曲面基底衍射光学元件的激光直写技术 [J]. 中国激光. 2017, 44(6): 0602002.

【25】Shi Y, Xu B, Wu D, et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology [J]. Chinese Journal of Lasers. 2019, 46(10): 1000001.
史杨, 许兵, 吴东, 等. 飞秒激光直写技术制备功能化微流控芯片研究进展 [J]. 中国激光. 2019, 46(10): 1000001.

【26】Paul S, Lyubopytov V S, Schumann M F, et al. Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter [J]. Optics Letters. 2016, 41(14): 3249-3252.

【27】Weber K, Hütt F, Thiele S, et al. Single mode fiber based delivery of OAM light by 3D direct laser writing [J]. Optics Express. 2017, 25(17): 19672-19679.

【28】Tian Z N, Chen Q D, Hu Z Y, et al. Mirror-rotation-symmetrical single-focus spiral zone plates [J]. Optics Letters. 2018, 43(13): 3116-3119.

【29】Sabatyan A, Elahi L. FFT-based convolution algorithm for fast and precise numerical evaluating diffracted field by photon sieve [J]. Optik. 2013, 124(21): 4960-4962.

引用该论文

Qin Yanliang,Huang Yi,Tu Pu,Zhang Qi,Zhao Ming,Yang Zhenyu. Fabrication of Perfect Vortex Beam Microplate Using Direct Laser Writing[J]. Chinese Journal of Lasers, 2020, 47(7): 0702003

秦燕亮,黄轶,涂谱,张琦,赵茗,杨振宇. 激光直写制备完美涡旋光束微波带片[J]. 中国激光, 2020, 47(7): 0702003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF