首页 > 论文 > 光学学报 > 39卷 > 8期(pp:0806003--1)

光通信链路中集成芯片的收发一体工作

Integrated Chip for Simultaneous Transmission and Reception in Optical Communication Links

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在PIN光电探测器(PIN-PD)结构的垂直方向上集成垂直腔面发射激光器(VCSEL)结构单元,实现了收发一体式工作的集成光电芯片对,可用于进一步提高光互连的性能。该集成光电芯片可以同时对两个波段进行收发一体工作,一端进行中心波长为805 nm的光信号的发送和中心波长为850 nm的光信号的接收,另一端进行中心波长为850 nm的光信号的发送和中心波长为805 nm的光信号接收。仿真优化805 nm波长处光信号发送端的结构与性能,理论分析结构中VCSEL单元和PIN-PD单元工作时的电学隔离和光学解耦,最终证实本结构可以同时进行收发一体的工作。

Abstract

This paper proposes an integrated optoelectronic chip pair that can simultaneously receive and transmit signals by integrating a vertical cavity surface emitting laser (VCSEL) unit in the vertical direction of a PIN photodetector (PIN-PD) unit. The two units can transmit in two bands at the same time. In particular, one terminal can transmit and receive optical signals at the central wavelengths of 805 and 850 nm, respectively; the other terminal can transmit and receive optical signals at the central wavelengths of 850 and 805 nm, respectively. This study mainly introduces and optimizes the structure and performance of one end of the optical signal transmission at the wavelength of 805 nm and theoretically analyzes the electrical isolation and optical decoupling of the VCSEL and PIN-PD units, which further ensures that the structure can work as a transceiver at the same time.

广告组5 - 光束分析仪
补充资料

中图分类号:TN256

DOI:10.3788/AOS201939.0806003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61874147);

收稿日期:2019-03-13

修改稿日期:2019-04-08

网络出版日期:2019-08-01

作者单位    点击查看

罗俊伟:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
刘凯:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
位祺:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
黄永清:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
段晓峰:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
王琦:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
任晓敏:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
蔡世伟:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876

联系人作者:刘凯(kliu@bupt.edu.cn)

备注:国家自然科学基金(61874147);

【1】Elby S. Evolution of networks to meet the explosion of cloud services. [C]∥Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California. Washington, D.C.: OSA. Tu2H, (2015).

【2】Fayyaz M and Aziz K. Classification of optical interconnects in data center networks. [C]∥2014 12th International Conference on Frontiers of Information Technology, December 17-19, 2014, Islamabad, Pakistan. New York: IEEE. 61-66(2014).

【3】Lü Z C, Wang Q, Yao S et al. 4×15 Gbit/s 850 nm vertical cavity surface emitting laser array. Acta Optica Sinica. 38(5), (2018).
吕朝晨, 王青, 尧舜 等. 4×15 Gbit/s 850 nm垂直腔面发射激光器列阵. 光学学报. 38(5), (2018).

【4】Feng Y, Hao Y Q, Wang X T et al. Structural optimization and fabrication of 850 nm vertical-cavity surface-emitting laser. Chinese Journal of Lasers. 44(3), (2017).
冯源, 郝永芹, 王宪涛 等. 850 nm垂直腔面发射激光器结构优化与制备. 中国激光. 44(3), (2017).

【5】Zhou Z P, Tu Z J, Li T T et al. Silicon photonics for advanced optical interconnections. Journal of Lightwave Technology. 33(4), 928-933(2015).

【6】Michalzik R, Kern A and Wahl D. Bidirectional multimode fiber interconnection. Proceedings of SPIE. 8176, (2012).

【7】Aziz K and Fayyaz M. Optical interconnects for data center networks. ∥Khan S, Zomaya A. Handbook on data centers. New York: Springer. 449-483(2015).

【8】Aleksic S. The future of optical interconnects for data centers: a review of technology trends. [C]∥2017 14th International Conference on Telecommunications (ConTEL), June 28-30, 2017, Zagreb, Croatia. New York: IEEE. 41-46(2017).

【9】Kern A, Paul S, Schwarz W et al. Bidirectional multimode fiber interconnection at Gb/s data rates with monolithically integrated VCSEL-PIN transceiver chips. IEEE Photonics Technology Letters. 23(15), 1058-1060(2011).

【10】Song Y M, Choi H J, Lee Y T et al. Reflective displacement sensors with monolithically integrated VCSELs and RCEPDs. Electronics Letters. 51(10), 782-783(2015).

【11】Kachris C. Budapest. New York: IEEE, 2015:. We. A3, (2015).

【12】Tatum J A, Gazula D, Graham L A et al. VCSEL-based interconnects for current and future data centers. Journal of Lightwave Technology. 33(4), 727-732(2015).

【13】Kern A, Al-Samaneh A, Wahl D et al. Monolithic VCSEL-PIN photodiode integration for bidirectional optical data transmission. IEEE Journal of Selected Topics in Quantum Electronics. 19(4), (2013).

【14】Shen P K, Chen C T, Li S L et al. Three-dimensional integrated optical interconnect with laser and photodetector on SOI substrate. [C]∥Technical Digest of the Eighteenth Microoptics Conference, October 27-30, 2014, Tokyo, Japan. New York: IEEE. 14034244, (2014).

【15】Liu K, Fan H Z, Huang Y Q et al. A pair of integrated optoelectronic transceiving chips for optical interconnects. Chinese Optics Letters. 16(9), (2018).

【16】Wang J, Ma X Y, Zheng K et al. -01-24. (2007).
王俊, 马骁宇, 郑凯 等. -01-24. . 高注入效率大功率808 nm量子阱半导体激光器结构: CN1901301A. (2007).

【17】Zhang Y, Ning Y Q, Zhang L S et al. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs. Optics Express. 19(13), 12569-12581(2011).

【18】Wohlmuth W A, Seo J W, Fay P et al. A high-speed ITO-InAlAs-InGaAs Schottky-barrier photodetector. IEEE Photonics Technology Letters. 9(10), 1388-1390(1997).

【19】Hurst J B. Molecular-beam epitaxial growth of low-dark-current avalanche photodiodes. Austin: University of Texas at Austin. (2007).

【20】Zhang J, de Groote A, Abbasi A et al. . Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors. Optics Express. 25(13), 14290-14299(2017).

【21】Wenzel H and Wunsche H J. The effective frequency method in the analysis of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 33(7), 1156-1162(1997).

【22】Li Z M, Dzurko K M, Delage A et al. A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure. IEEE Journal of Quantum Electronics. 28(4), 792-803(1992).

【23】Lear K L. Al-Omari A N. Progress and issues for high-speed vertical cavity surface emitting lasers. Proceedings of SPIE. 6484, (2007).

引用该论文

Luo Junwei,Liu Kai,Wei Qi,Huang Yongqing,Duan Xiaofeng,Wang Qi,Ren Xiaomin,Cai Shiwei. Integrated Chip for Simultaneous Transmission and Reception in Optical Communication Links[J]. Acta Optica Sinica, 2019, 39(8): 0806003

罗俊伟,刘凯,位祺,黄永清,段晓峰,王琦,任晓敏,蔡世伟. 光通信链路中集成芯片的收发一体工作[J]. 光学学报, 2019, 39(8): 0806003

被引情况

【1】颜颖颖,陈志文,邱剑,刘克富,张建伟. 封装对大功率VCSEL窄脉冲发光特性的影响. 光学学报, 2020, 40(8): 814001--1

【2】皮顿,单子豪,吴兴坤. 光纤通信波段微光学件的抗反射纳米结构. 光学学报, 2020, 40(6): 622002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF