首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:202404--1)

光纤端的等离激元探测技术

Plasmonic Sensing on Fiber Tip

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

尝试对两类典型的光纤端集成等离激元探测技术的发展进行回顾与梳理,并结合作者的科研实践对本领域未来工作的重点和潜在价值进行讨论。第一类技术是在光纤的端平面集成等离激元谐振传感结构,尤其是等离激元微腔。这种器件既能够插进微量样品通过dip-and-read方式进行生物分子传感,也能够伸入狭小的空间进行超声内窥探测。未来,如何在秉持方便、快速核心价值的基础上,解决复杂样品中低含量分子检测的难题,是这类器件进入医学诊断和食品检验应用领域的关键;而如何大幅提高表面等离激元谐振传感器对声信号的灵敏度,是实现具有重要应用价值的光纤表面等离激元谐振水听器阵列的关键。第二类技术是在锥形光纤尖端集成等离激元天线探针。结合各种扫描探针显微技术,这种器件提供了对等离激元天线的高精度动态调控能力,及通过等离激元热点与样品的强烈作用进行高分辨扫描成像的能力。未来,通过对天线探针和可测量物理量的创新研究,有望进一步扩展可表征物理和化学现象的范围,显著提升表征性能。

Abstract

In this paper, we attempt to review and sort out the development of two typical types of plasmonic-sensing-on-fiber-tip technologies, and discuss the focus for future work and potential values for application. The first type is surface plasmon resonance (SPR) sensing structures, especially surface plasmon cavities, integrated on optical fiber end-facets. They can be applied to small volumes of samples and achieve biomolecule sensing in a dip-and-read manner. They can also be inserted into narrow spaces for ultrasound endoscopy. In the future, how to solve the problem of low content detection in complex crude samples while upholding the core values of convenience and rapidness, is the critical challenge for fiber SPR sensor development in order to find real application values in medical diagnosis and agriculture product inspection. On the other hand, to greatly improve SPR devices'' sensitivities to acoustic signals is the key to achieving fiber SPR hydrophone arrays with high application values. The second type is plasmonic antennas integrated on tapered optical fibers'' apexes. Combined with scanning probe microscopy technologies, these probe devices render high precision and dynamic tuning of plasmonic antennas, and high resolution scanning microscopy by using plasmonic hotspots to strongly interact with and map the samples. In the future, through innovative research on the antenna probes and the to-be-measured quantities, the scope of physical and chemical phenomena that can be characterized is expected to be further expanded, and the characterization performance is expected to significantly improve.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.202404

所属栏目:“等离激元新效应与应用”专题

基金项目:国家自然科学基金、上海市自然科学基金、上海交通大学医工交叉研究基金;

收稿日期:2019-08-02

修改稿日期:2019-08-28

网络出版日期:2019-10-01

作者单位    点击查看

杨天:上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
陈成:上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
王晓丹:上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
周鑫:上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
雷泽雨:上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240

联系人作者:杨天(tianyang@sjtu.edu.cn)

备注:国家自然科学基金、上海市自然科学基金、上海交通大学医工交叉研究基金;

【1】Institute of Physics. The health of photonics: how light-based technologies are solving industry challenges, and how they can be harnessed to impact future economic growth[R]. UK: IOP. (2018).

【2】Andrade G F S and Brolo A G. Nanoplasmonic structures in optical fibers. ∥Dmitriev A. Nanoplasmonic sensors. Integrated analytical systems. New York, NY: Springer. 289-315(2012).

【3】Kostovski G, Stoddart P R and Mitchell A. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Advanced Materials. 26(23), 3798-3820(2014).

【4】Caucheteur C, Guo T and Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Analytical and Bioanalytical Chemistry. 407(14), 3883-3897(2015).

【5】Vaiano P, Carotenuto B, Pisco M et al. Lab on fiber technology for biological sensing applications. Laser & Photonics Reviews. 10(6), 922-961(2016).

【6】Liu F F and Zhang X P. Sensors based on metallic photonic structures integrated onto end facets of fibers. Laser & Optoelectronics Progress. 54(2), (2017).
刘飞飞, 张新平. 光纤端面集成金属光子结构传感器. 激光与光电子学进展. 54(2), (2017).

【7】Yang T, He X L, Zhou X et al. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Optics & Laser Technology. 101, 468-478(2018).

【8】Xu Y, Bai P, Zhou X D et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Advanced Optical Materials. 7(9), (2019).

【9】Dhawan A, Muth J F, Leonard D N et al. Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 26(6), 2168-2173(2008).

【10】Smythe E J, Dickey M D, Whitesides G M et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano. 3(1), 59-65(2009).

【11】Smythe E J, Dickey M D, Bao J M et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Letters. 9(3), 1132-1138(2009).

【12】Lipomi D J, Martinez R V, Kats M A et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Letters. 11(2), 632-636(2011).

【13】Lin Y B, Zou Y and Lindquist R G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomedical Optics Express. 2(3), 478-484(2011).

【14】Feng S F, Zhang X P, Wang H et al. Fiber coupled waveguide grating structures. Applied Physics Letters. 96(13), (2010).

【15】Feng S F, Darmawi S, Henning T et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small. 8(12), 1937-1944(2012).

【16】Nguyen H, Sidiroglou F, Collins S F et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures. Applied Physics Letters. 103(19), (2013).

【17】Andrade G F S, Hayashi J G, Rahman M M et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips. Plasmonics. 8(2), 1113-1121(2013).

【18】Micco A, Ricciardi A, Pisco M et al. Optical fiber tip templating using direct focused ion beam milling. Scientific Reports. 5, (2015).

【19】Principe M, Consales M, Micco A et al. Optical fiber meta-tips. Light: Science & Applications. 6(3), (2017).

【20】Scaravilli M, Micco A, Castaldi G et al. Excitation of Bloch surface waves on an optical fiber tip. Advanced Optical Materials. 6(19), (2018).

【21】Liang Y Z, Zhang H, Zhu W Q et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sensors. 2(12), 1796-1804(2017).

【22】Liang Y Z, Yu Z Y, Li L X et al. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Scientific Reports. 9, (2019).

【23】Liu Y, Guang J Y, Liu C et al. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform. Advanced Optical Materials. 7(19), (2019).

【24】Du H C, Chen Z Y, Chen N et al. Fabrication of a novel concave cone surface-enhanced Raman scattering fiber probe. Chinese Journal of Lasers. 44(2), (2017).
杜怀超, 陈振宜, 陈娜 等. 新型凹锥形表面增强拉曼散射光纤探针的制备. 中国激光. 44(2), (2017).

【25】He X L, Yi H, Long J et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing. Applied Physics Letters. 108(23), (2016).

【26】White I M and Fan X D. On the performance quantification of resonant refractive index sensors. Optics Express. 16(2), 1020-1028(2008).

【27】Kim H M, Uh M, Jeong D H et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber. Sensors and Actuators B: Chemical. 280, 183-191(2019).

【28】Fan X D, White I M, Shopova S I et al. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta. 620(1/2), 8-26(2008).

【29】Lee B, Roh S and Park J. Current status of micro- and nano-structured optical fiber sensors. Optical Fiber Technology. 15(3), 209-221(2009).

【30】Slavík R and Homola J. tyrok J. Single-mode optical fiber surface plasmon resonance sensor . Sensors and Actuators B: Chemical. 54(1/2), 74-79(1999).

【31】Piliarik M, Homola J, Maníková Z et al. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators B: Chemical. 90(1/2/3), 236-242(2003).

【32】Villatoro J, Monzón-Hernández D and Mejía E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Applied Optics. 42(13), 2278-2283(2003).

【33】Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters. 39(5), 1235-1237(2014).

【34】Li D C, Wu J W, Wu P et al. Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer. Sensors and Actuators B: Chemical. 213, 295-304(2015).

【35】Jauregui-Vazquez D and Haus J W. Negari A B H, et al. Bitapered fiber sensor: signal analysis. Sensors and Actuators B: Chemical. 218, 105-110(2015).

【36】Patnaik A, Senthilnathan K and Jha R. Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor. IEEE Photonics Technology Letters. 27(23), 2437-2440(2015).

【37】Shi S, Wang L B, Su R X et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosensors and Bioelectronics. 74, 454-460(2015).

【38】Li L X, Liang Y Z, Liu Q et al. Dual-channel fiber-optic biosensor for self-compensated refractive index measurement. IEEE Photonics Technology Letters. 28(19), 2110-2113(2016).

【39】Lu B Y, Lai X C, Zhang P H et al. Roughened cylindrical gold layer with curve graphene coating for enhanced sensitivity of fiber SPR sensor. [C]∥2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), June 18-22, 2017, Kaohsiung, Taiwan, China. New York: IEEE. 1991-1994(2017).

【40】Kant R, Tabassum R and Gupta B D. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosensors and Bioelectronics. 99, 637-645(2018).

【41】Quero G, Consales M, Severino R et al. Long period fiber grating nano-optrode for cancer biomarker detection. Biosensors and Bioelectronics. 80, 590-600(2016).

【42】Guo T, Liu F, Guan B O et al. Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology. 78, 19-33(2016).

【43】Guo T. Review on plasmonic optical fiber grating biosensors. Acta Optica Sinica. 38(3), (2018).
郭团. 等离子体共振光纤光栅生物传感器综述. 光学学报. 38(3), (2018).

【44】Lei Z Y, Zhou X, Yang J et al. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing. Applied Physics Letters. 110(17), (2017).

【45】Lei Z Y, Chen X, Wang X D et al. Surface-emitting surface plasmon polariton laser in a second-order distributed feedback defect cavity. ACS Photonics. 6(3), 612-619(2019).

【46】Kim H T and Yu M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing. Scientific Reports. 9, (2019).

【47】Zhang X P, Liu F F and Lin Y H. Direct transfer of metallic photonic structures onto end facets of optical fibers. Frontiers in Physics. 4, (2016).

【48】Jia P P, Yang Z L, Yang J et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sensors. 1(8), 1078-1083(2016).

【49】Li S J and Li W D. Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet. Optics Express. 25(23), 29380-29388(2017).

【50】Wang T X, Cao R, Ning B et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound. Applied Physics Letters. 107(15), (2015).

【51】Zhou X, Cai D, He X L et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities. Optics Letters. 43(4), 775-778(2018).

【52】Ashkenazi S, Chao C Y, Guo L J et al. Ultrasound detection using polymer microring optical resonator. Applied Physics Letters. 85(22), 5418-5420(2004).

【53】Huang S W, Chen S L, Ling T et al. Low-noise wideband ultrasound detection using polymer microring resonators. Applied Physics Letters. 92(19), (2008).

【54】Zhang C, Ling T, Chen S L et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photonics. 1(11), 1093-1098(2014).

【55】Zhang C, Chen S L, Ling T et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization. IEEE Sensors Journal. 15(6), 3241-3248(2015).

【56】Li H, Dong B Q, Zhang Z et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Scientific Reports. 4, (2014).

【57】Leinders S M, Westerveld W J, Pozo J et al. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane. Scientific Reports. 5, (2015).

【58】Zhang S L, Chen J and He S L. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor. Optics Communications. 382, 113-118(2017).

【59】Kim K H, Luo W, Zhang C et al. Air-coupled ultrasound detection using capillary-based optical ring resonators. Scientific Reports. 7, (2017).

【60】Wei H M and Krishnaswamy S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection. Optics Letters. 42(13), 2655-2658(2017).

【61】Morris P, Hurrell A, Shaw A et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. The Journal of the Acoustical Society of America. 125(6), 3611-3622(2009).

【62】Zhang E Z and Beard P C. A miniature all-optical photoacoustic imaging probe. Proceedings of SPIE. 7899, (2011).

【63】Allen T J, Zhang E and Beard P C. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor. Proceedings of SPIE. 9323, (2015).

【64】Guggenheim J A, Li J, Allen T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics. 11(11), 714-719(2017).

【65】Wissmeyer G, Pleitez M A, Rosenthal A et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light: Science & Applications. 7(1), (2018).

【66】Roussel B, Cochard J and Bouye C. Biophotonics market: technologies and market analysis France: European Photonics Industry Consortium,. Tematys and Yole Développement. (2013).

【67】MarketsandMarkets, . Label-free detection market by technology (surface plasmon resonance, bio-layer interferometry), products (consumables, microplates, biosensor chips), applications (binding kinetics, thermodynamics, lead generation), end user-global forecast to 2022 Magarpatta SEZ: MarketsandMarkets TM Research Private Ltd. (2017).

【68】Thygesen K, Alpert J S, Jaffe A S et al. Third universal definition of myocardial infarction. European Heart Journal. 33(20), 2551-2567(2012).

【69】Ansari R, Zhang E Z, Desjardins A E et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light: Science & Applications. 7(1), (2018).

【70】Huynh N T, Lucka F, Zhang E Z et al. High speed multi-beam Fabry-Perot scanner for fast high resolution photoacoustic imaging. [C]∥SPIE Photonics West BIOS, January 27-28, 2018, San Francisco, USA. USA: SPIE. 10494-107(2018).

【71】Guggenheim J A, Zhang E Z and Beard P C. Photoacoustic imaging with highly sensitive 2D planoconcave optical microresonators arrays. [C]∥SPIE Photonics West BIOS, January 27-28, 2018, San Francisco, USA. USA: SPIE. 10494-68(2018).

【72】Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation. Nature Materials. 9(3), 193-204(2010).

【73】Novotny L and van Hulst N. Antennas for light. Nature Photonics. 5(2), 83-90(2011).

【74】Cubukcu E, Kort E A, Crozier K B et al. Plasmonic laser antenna. Applied Physics Letters. 89(9), (2006).

【75】Ciracì C, Hill R T, Mock J J et al. Probing the ultimate limits of plasmonic enhancement. Science. 337(6098), 1072-1074(2012).

【76】Long J, Yi H, Li H Q et al. Reproducible ultrahigh SERS enhancement in single deterministic hotspots using nanosphere-plane antennas under radially polarized excitation. Scientific Reports. 6, (2016).

【77】Zhu W Q, Esteban R, Borisov A G et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications. 7, (2016).

【78】Xu D, Xiong X, Wu L et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics. 10(4), 703-756(2018).

【79】Baumberg J J, Aizpurua J, Mikkelsen M H et al. Extreme nanophotonics from ultrathin metallic gaps. Nature Materials. 18(7), 668-678(2019).

【80】Jackman J A, Ferhan A R and Cho N J. Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews. 46(12), 3615-3660(2017).

【81】Sonnichsen C, Reinhard B M, Liphardt J et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology. 23(6), 741-745(2005).

【82】Liu G L, Yin Y D, Kunchakarra S et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology. 1(1), 47-52(2006).

【83】Chen T H, Hong Y and Reinhard B M. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers. Nano Letters. 15(8), 5349-5357(2015).

【84】Camden J P, Dieringer J A, Wang Y M et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society. 130(38), 12616-12617(2008).

【85】Wang D X, Zhu W Q, Best M D et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Letters. 13(5), 2194-2198(2013).

【86】Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials. 1, (2016).

【87】Tang L, Kocabas S E, Latif S et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photonics. 2(4), 226-229(2008).

【88】Miller D A B. Attojoule optoelectronics for low-energy information processing and communications. Journal of Lightwave Technology. 35(3), 346-396(2017).

【89】Ward D R, Hüser F, Pauly F et al. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotechnology. 5(10), 732-736(2010).

【90】Kauranen M and Zayats A V. Nonlinear plasmonics. Nature Photonics. 6(11), 737-748(2012).

【91】Metzger B, Hentschel M, Schumacher T et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Letters. 14(5), 2867-2872(2014).

【92】Aouani H, Rahmani M, Navarro-Cía M et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotechnology. 9(4), 290-294(2014).

【93】Li G X, Zhang S and Zentgraf T. Nonlinear photonic metasurfaces. Nature Reviews Materials. 2, (2017).

【94】Dong Z C, Zhang X L, Gao H Y et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nature Photonics. 4(1), 50-54(2010).

【95】Chikkaraddy R, de Nijs B, Benz F et al. . Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 535(7610), 127-130(2016).

【96】Savage K J, Hawkeye M M, Esteban R et al. Revealing the quantum regime in tunnelling plasmonics. Nature. 491(7425), 574-577(2012).

【97】Tame M S. McEnery K R, Ozdemir K, et al. Quantum plasmonics. Nature Physics. 9(6), 329-340(2013).

【98】Zhu W Q and Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nature Communications. 5, (2014).

【99】Tan S F and Wu L. Yang J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science. 343(6178), 1496-1499(2014).

【100】Li J F, Huang Y F, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 464(7287), 392-395(2010).

【101】Liu B A, Wang D X, Shi C et al. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation. Optics Express. 19(11), 10049-10056(2011).

【102】Mertens J, Eiden A L, Sigle D O et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Letters. 13(11), 5033-5038(2013).

【103】Li G C, Zhang Q, Maier S A et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics. 7(12), 1865-1889(2018).

【104】Park W H and Kim Z H. Charge transfer enhancement in the SERS of a single molecule. Nano letters. 10(10), 4040-4048(2010).

【105】Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photonics. 8(11), 835-840(2014).

【106】Long J and Yang T. Observation of single molecule dynamic behaviors with SERS: desorption and conformation switching. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA. FM4N, (2016).

【107】Choi H K, Park W H, Park C G et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. Journal of the American Chemical Society. 138(13), 4673-4684(2016).

【108】Benz F, Schmidt M K, Dreismann A et al. Single-molecule optomechanics in “picocavities”. Science. 354(6313), 726-729(2016).

【109】Wang X D, Yi H and Yang T. Efficient four-wave mixing in loaded nanoscale plasmonic hotspots. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA. NW1A, (2017).

【110】Zhang L, Yu Y J, Chen L G et al. Electrically driven single-photon emission from an isolated single molecule. Nature Communications. 8, (2017).

【111】Yang T and Long J. -05-30)[2019-08-01]. https:∥arxiv. org/abs/1601, (2017).

【112】Lombardi A, Schmidt M K, Weller L et al. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking. Physical Review X. 8(1), (2018).

【113】Wang X, Li M H, Meng L Y et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano. 8(1), 528-536(2014).

【114】Lin K Q, Yi J, Zhong J H et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nature Communications. 8, (2017).

【115】Hill R T, Mock J J, Hucknall A et al. Plasmon ruler with angstrom length resolution. ACS Nano. 6(10), 9237-9246(2012).

【116】Mock J J, Hill R T, Tsai Y J et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Letters. 12(4), 1757-1764(2012).

【117】Chen W, Zhang S P, Deng Q et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nature Communications. 9, (2018).

【118】Readman C, de Nijs B, Szabó I et al. . Anomalously large spectral shifts near the quantum tunnelling limit in plasmonic rulers with subatomic resolution. Nano Letters. 19(3), 2051-2058(2019).

【119】Chikkaraddy R, Turek V A, Kongsuwan N et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Letters. 18(1), 405-411(2018).

【120】Yi H, Long J, Li H Q et al. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots. Optics Express. 23(7), 8338-8347(2015).

【121】Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 498(7452), 82-86(2013).

【122】Jiang S, Zhang Y, Zhang R et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nature Nanotechnology. 10(10), 865-869(2015).

【123】Zhang Y, Meng Q S, Zhang L et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nature Communications. 8, (2017).

【124】Zhang Y, Luo Y, Zhang Y et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature. 531(7596), 623-627(2016).

【125】Wang L and Xu X F. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Applied Physics Letters. 90(26), (2007).

【126】Taminiau T H, Moerland R J, Segerink F B et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters. 7(1), 28-33(2007).

【127】Wang Y, Srituravanich W, Sun C et al. Plasmonic nearfield scanning probe with high transmission. Nano Letters. 8(9), 3041-3045(2008).

【128】Zou Y S, Steinvurzel P, Yang T et al. Surface plasmon resonances of optical antenna atomic force microscope tips. Applied Physics Letters. 94(17), (2009).

【129】Burresi M, van Oosten D, Kampfrath T et al. . Probing the magnetic field of light at optical frequencies. Science. 326(5952), 550-553(2009).

【130】Fleischer M, Weber-Bargioni A, Altoe M V et al. Gold nanocone near-field scanning optical microscopy probes. ACS Nano. 5(4), 2570-2579(2011).

【131】Weber-Bargioni A, Schwartzberg A, Cornaglia M et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters. 11(3), 1201-1207(2011).

【132】Umakoshi T, Yano T A, Saito Y et al. Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy. Applied Physics Express. 5(5), (2012).

【133】Berweger S, Atkin J M, Olmon R L et al. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. The Journal of Physical Chemistry Letters. 3(7), 945-952(2012).

【134】Kravtsov V, Ulbricht R, Atkin J M et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nature Nanotechnology. 11(5), 459-464(2016).

【135】Fleischer M. Near-field scanning optical microscopy nanoprobes. Nanotechnology Reviews. 1(4), 313-338(2012).

【136】Huth F, Chuvilin A, Schnell M et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Letters. 13(3), 1065-1072(2013).

【137】Schuck P J, Weber-Bargioni A, Ashby P D et al. Life beyond diffraction: opening new routes to materials characterization with next-generation optical near-field approaches. Advanced Functional Materials. 23(20), 2539-2553(2013).

【138】Maouli I, Taguchi A, Saito Y et al. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Applied Physics Express. 8(3), (2015).

【139】Zhao Y. Saleh A A E, van de Haar M A, et al. Nanoscopic control and quantification of enantioselective optical forces. Nature Nanotechnology. 12(11), 1055-1059(2017).

【140】Ma X Z, Zhu Y Z, Yu N et al. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Letters. 19(1), 100-107(2019).

【141】Kim S, Yu N, Ma X Z et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nature Photonics. 13(9), 636-643(2019).

【142】He X L, Yang L and Yang T. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides. Optics Express. 19(14), 12865-12872(2011).

【143】Kalkbrenner T, Ramstein M, Mlynek J et al. A single gold particle as a probe for apertureless scanning near-field optical microscopy. Journal of Microscopy. 202(1), 72-76(2001).

【144】Kühn S, H kanson U, Rogobete L et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical Review Letters. 97(1), (2006).

【145】Novotny L and Hecht B. Principles of nano-optics. (2012).

【146】Danckwerts M and Novotny L. Optical frequency mixing at coupled gold nanoparticles. Physical Review Letters. 98(2), (2007).

【147】Anger P, Bharadwaj P and Novotny L. Enhancement and quenching of single-molecule fluorescence. Physical Review Letters. 96(11), (2006).

【148】Kim Z H and Leone S R. High-resolution apertureless near-field optical imaging using gold nanosphere probes. The Journal of Physical Chemistry B. 110(40), 19804-19809(2006).

【149】Olk P, Renger J, Wenzel M T et al. Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Letters. 8(4), 1174-1178(2008).

【150】Chen C, Li H Q, Li H et al. Localized surface plasmon resonance scanning microscopy with optical antenna on fiber taper. [C]∥Proceedings of the 19th IEEE International Conference on Nanotechnology, Macao. New York: IEEE. (2019).

引用该论文

Yang Tian,Chen Cheng,Wang Xiaodan,Zhou Xin,Lei Zeyu. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404

杨天,陈成,王晓丹,周鑫,雷泽雨. 光纤端的等离激元探测技术[J]. 激光与光电子学进展, 2019, 56(20): 202404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF