首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0212001--1)

单交变光场的微控移相精密直线位移测量方法

Measurement Method for Micro-Controlled Phase-Shifting Precise Linear Displacement of Single-Alternating Light Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有多交变光场的光源一致性差、体积大、难集成的问题,提出一种单交变光场的驻波合成电行波的微控移相精密直线位移测量方法。该方法利用单路交变光源与四路正弦栅面空间调制获得四路光强信号;通过微控移相电路获得时间上严格相差90°的两路驻波信号,并合成一路电行波信号;最后利用高频时钟脉冲对参考信号与电行波信号的相位差进行插补,实现位移测量。文中分析微控移相测量原理,并针对移相精度和光场分布建立理论模型和仿真模型,明确了传感器因移相精度和光场分布引起的一次、二次误差产生的原因。实验结果表明,所研制的原理样机,在0.6 mm的短周期内原始测量精度为±0.26 μm,经误差修正和优化后,在500 mm测量范围内,测量精度与RENISHAW激光干涉仪基本一致。集成化的结构和高精度测量结果为该传感器下一步工程化应用提供了良好的基础。

Abstract

To resolve the issues of poor consistency, large volume, and difficult integration for a multi-alternating light source, a precise linear displacement measurement method for micro-controlled phase shift is proposed based on the electric traveling wave synthetized from the standing wave of single-alternating light field, herein. The proposed method uses a single-alternating light source and the spatial modulation of a four-channel sinusoidal grid to obtain four-channel light intensity signals, resulting in two-channel standing wave signals with a strict phase difference of 90° by the micro-controlled phase-shifting circuit. A one-channel traveling wave signal is synthesized from the two-channel standing wave signals. Finally, the phase difference between the reference signal and the electric traveling wave signal is interpolated by a high-frequency clock pulse to realize a displacement measurement. In addition, the principle of micro-controlled phase-shifting measurement is analyzed, the theoretical and simulation models of phase-shifting accuracy and light-field distribution are established, and the causes of primary and secondary errors introduced by phase-shifting accuracy and light-field distribution of the sensor are clarified. Experimental results demonstrate an original measurement accuracy of ±0.26 μm for the prototype in a short period of 0.6 mm; after applying error correction and optimization, the resultant measurement accuracy is basically similar to that of the RENISHAW laser interferometer over a measurement range of 500 mm. This integrated structure and high-precision measurement results provide a solid foundation for future engineering applications of these sensors.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP212.14

DOI:10.3788/AOS202040.0212001

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金、国家重大科研仪器研制项目、重庆市教委科学技术研究项目、重庆理工大学研究生创新创业项目;

收稿日期:2019-07-18

修改稿日期:2019-09-09

网络出版日期:2020-02-01

作者单位    点击查看

朱革:重庆理工大学机械工程学院, 重庆 400054
蒲治伟:重庆理工大学机械工程学院, 重庆 400054重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及先进检测技术重庆市重点实验室, 重庆 400054
付敏:重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及先进检测技术重庆市重点实验室, 重庆 400054
李昌利:重庆理工大学机械工程学院, 重庆 400054重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及先进检测技术重庆市重点实验室, 重庆 400054
余小雨:重庆理工大学机械工程学院, 重庆 400054重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及先进检测技术重庆市重点实验室, 重庆 400054
张双亚:重庆理工大学机械工程学院, 重庆 400054重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及先进检测技术重庆市重点实验室, 重庆 400054

联系人作者:付敏(fum_0@cqut.edu.cn)

备注:国家自然科学基金、国家重大科研仪器研制项目、重庆市教委科学技术研究项目、重庆理工大学研究生创新创业项目;

【1】Zhou L, Wang Z H, Sun D C, et al. Present situation and development of modern precision measurement technology [J]. Chinese Journal of Scientific Instrument. 2017, 38(8): 1869-1878.
周亮, 王振环, 孙东辰, 等. 现代精密测量技术现状及发展 [J]. 仪器仪表学报. 2017, 38(8): 1869-1878.

【2】Guan J, K?chert P, Weichert C, et al. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder [J]. Precision Engineering. 2013, 37(4): 865-870.

【3】Zhao S S, Hou C L, Zhang J, et al. A high-resolution displacement sensor based on a grating interferometer with the phase modulation technique [J]. Measurement Science and Technology. 2012, 23(10): 105102.

【4】Gao J L, Zong M C. Development of symmetrical double-grating interferometric displacement measuring system [J]. Chinese Journal of Lasers. 2016, 43(9): 0904003.
高金磊, 宗明成. 一种对称式双光栅干涉位移测量系统的研制 [J]. 中国激光. 2016, 43(9): 0904003.

【5】Feng Y Q, Wan Q H, Song C, et al. Interpolation of small photoelectric encoder based on coordinate rotation digital computer algorithm [J]. Acta Optica Sinica. 2014, 34(2): 0205001.
冯英翘, 万秋华, 宋超, 等. 基于坐标旋转数字计算算法的小型光电编码器细分 [J]. 光学学报. 2014, 34(2): 0205001.

【6】Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP [J]. Nature. 2011, 478(7368): 204-208.

【7】Qiao D, Xu Z J, Wu H S, et al. A method for compensating interpolation error of absolute linear encoder [J]. Acta Optica Sinica. 2015, 35(1): 0112008.
乔栋, 续志军, 吴宏圣, 等. 绝对式光栅尺细分误差补偿方法 [J]. 光学学报. 2015, 35(1): 0112008.

【8】Su Y R, Wang Q, Yan F B, et al. Subdivision error analysis and compensation for photoelectric angle encoder in a telescope control system [J]. Mathematical Problems in Engineering. 2015, 2015: 967034.

【9】Sun Q. Progress and technical features of absolute grating with high precision World Manufacturing Engineering & Market[J]. 0, 2012(5): 72-73.
孙强. 高精度绝对式光栅尺研究进展及技术难点 世界制造技术与装备市场[J]. 0, 2012(5): 72-73.

【10】Soref R A, de Leonardis F, Passaro V M N, et al. On-chip digital Fourier-transform spectrometer using a thermo-optical Michelson grating interferometer [J]. Journal of Lightwave Technology. 2018, 36(22): 5160-5167.

【11】Lin D K, Chen H Y, Liu Z K, et al. Errors analysis of flat-field gratings fabricated by EBL-NFH and errors compensation [J]. Acta Optica Sinica. 2018, 38(5): 0505003.
林达奎, 陈火耀, 刘正坤, 等. 电子束光刻-近场全息法制作平焦场光栅的误差分析及补偿方法 [J]. 光学学报. 2018, 38(5): 0505003.

【12】Feng Y Q, Wan Q H, Sun Y, et al. Interpolation error correction of moiré fringe photoelectric signals in the approximate form of triangle wave [J]. Acta Optica Sinica. 2013, 33(8): 0812001.
冯英翘, 万秋华, 孙莹, 等. 近似三角波莫尔条纹光电信号的细分误差修正 [J]. 光学学报. 2013, 33(8): 0812001.

【13】Gao X, Wan Q H, Lu X R, et al. Automatic compensation of sine deviation for grating fringe photoelectric signal [J]. Acta Optica Sinica. 2013, 33(7): 0712001.
高旭, 万秋华, 卢新然, 等. 光栅条纹光电信号正弦性偏差的自动补偿 [J]. 光学学报. 2013, 33(7): 0712001.

【14】Ye S L, Zhang Q, Zhu W B. Study on quadrature error real-time compensation for grating moiré signal [J]. Chinese Journal of Scientific Instrument. 2017, 38(1): 57-64.
叶树亮, 张潜, 朱维斌. 光栅莫尔信号正交误差实时补偿研究 [J]. 仪器仪表学报. 2017, 38(1): 57-64.

【15】Peng D L, Fu M, Zhu G, et al. Study on a novel linear displacement sensor based on the orthogonal modulating light intensity [J]. Acta Optica Sinica. 2014, 34(12): 1212007.
彭东林, 付敏, 朱革, 等. 一种光强正交调制的新型线性位移传感器研究 [J]. 光学学报. 2014, 34(12): 1212007.

【16】Zhu G, Zhang C, Fu M, et al. Developement of alternating light field space-time coupling type displacement measuring system [J]. Optics and Precision Engineering. 2017, 25(8): 2011-2022.
朱革, 张超, 付敏, 等. 交变光场时空耦合型位移测量系统的研制 [J]. 光学精密工程. 2017, 25(8): 2011-2022.

【17】Chen H W, Wen S S, Ma B X, et al. Design of plant lighting LED lamp with freeform surface substrate based on light quantum theory [J]. Acta Optica Sinica. 2017, 37(2): 0222001.
陈浩伟, 文尚胜, 马丙戌, 等. 基于光量子学的植物照明用自由曲面底板LED光源设计 [J]. 光学学报. 2017, 37(2): 0222001.

【18】Song J, Gao X, Yan H Y, et al. Thermal lens effect of high power semiconductor laser waveguide and its influence on beam divergence angle of slow axis [J]. Chinese Journal of Lasers. 2018, 45(10): 1005004.
宋健, 高欣, 闫宏宇, 等. 大功率半导体激光器波导热透镜效应及对慢轴光束发散角的影响 [J]. 中国激光. 2018, 45(10): 1005004.

引用该论文

Zhu Ge,Pu Zhiwei,Fu Min,Li Changli,Yu Xiaoyu,Zhang Shuangya. Measurement Method for Micro-Controlled Phase-Shifting Precise Linear Displacement of Single-Alternating Light Field[J]. Acta Optica Sinica, 2020, 40(2): 0212001

朱革,蒲治伟,付敏,李昌利,余小雨,张双亚. 单交变光场的微控移相精密直线位移测量方法[J]. 光学学报, 2020, 40(2): 0212001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF