首页 > 论文 > 激光与光电子学进展 > 57卷 > 8期(pp:81024--1)

基于图优化理论和GNSS激光SLAM位姿优化算法

Laser SLAM Pose Optimization Algorithm Based on Graph Optimization Theory and GNSS

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种激光雷达SLAM(simultaneous localization and mapping)位姿优化算法。该算法基于图优化算法理论并融合GNSS (global navigation satellite system)数据,在位姿图中加入卫星定位节点,可以有效将无回环时轨迹误差控制在GNSS定位误差范围内,有长时性回环时可以准确定位回环检测点,从而达到提高激光雷达SLAM位姿全局一致性的效果。在室外刚性特性较好的城市环境和刚性特性较差的非城市环境下进行测试,从结果可以看出:所提算法将在无回环300 m距离直线建图情况以及在360 m以上距离一次、二次回环情况下的轨迹偏差分别控制在1 m左右、0.2 m以内以及0.1 m左右,这充分证明了所提算法的有效性。

Abstract

In this paper, a LiDAR simultaneous localization and mapping (SLAM) pose optimization algorithm is proposed based on graph optimization theory and global navigation satellite system (GNSS) data. By adding the satellite positioning node into the pose graph, the trajectory error can be effectively controlled within the range of GNSS positioning error when there is no loopback. In long distance loopback, the loopback detection point can be accurately located, which improves the global consistency of the LiDAR SLAM pose graph. The proposed algorithm is tested in the urban environment with better rigidity and in the non-urban environment with weaker rigidity. Experimental results show that the trajectory drift can be controlled to be about 1 m for 300 m straight-line mapping when there is no loopback. In the case of long distance (above 360 m) loopback, the proposed algorithm controls the trajectory drift to be within 0.2 m and about 0.1 m for the primary and the secondary loopback,respectively. These results fully demonstrate the effectiveness of the proposed algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.081024

所属栏目:图像处理

收稿日期:2019-08-16

修改稿日期:2019-09-26

网络出版日期:2020-04-01

作者单位    点击查看

陆世东:湖北省国土资源研究院, 湖北 武汉 430071
涂美义:湖北省国土资源研究院, 湖北 武汉 430071
罗小勇:湖南格纳微信息科技有限公司, 湖南 长沙 410006
郭超:湖南格纳微信息科技有限公司, 湖南 长沙 410006

联系人作者:涂美义(76235431@qq.com)

【1】Liu M, Shu Q, Yang Y X, et al. Three-dimensional point cloud registration based on independent component analysis [J]. Laser & Optoelectronics Progress. 2019, 56(1): 011203.
刘鸣, 舒勤, 杨赟秀, 等. 基于独立成分分析的三维点云配准算法 [J]. 激光与光电子学进展. 2019, 56(1): 011203.

【2】Liu Q, Duan F H, Sang Y, et al. A survey of loop-closure detection method of visual SLAM in complex environments [J]. Robot. 2019, 41(1): 112-123, 136.
刘强, 段富海, 桑勇, 等. 复杂环境下视觉SLAM闭环检测方法综述 [J]. 机器人. 2019, 41(1): 112-123, 136.

【3】Alismail H, Baker L D, Browning B. Continuous trajectory estimation for 3D SLAM from actuated lidar . [C]∥2014 IEEE International Conference on Robotics and Automation (ICRA), May 31-June 7, 2014, Hong Kong, China. New York: IEEE. 2014, 6096-6101.

【4】Wen G C, Zeng B, Chen Y H. Loop closure detection method for large scale map of laser SLAM [J]. Application Research of Computers. 2018, 35(6): 1724-1727, 1732.
文国成, 曾碧, 陈云华. 一种适用于激光SLAM大尺度地图的闭环检测方法 [J]. 计算机应用研究. 2018, 35(6): 1724-1727, 1732.

【5】Galvez-López D, Tardos J D. Bags of binary words for fast place recognition in image sequences [J]. IEEE Transactions on Robotics. 2012, 28(5): 1188-1197.

【6】Pierzcha?a M, Giguère P, Astrup R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM [J]. Computers and Electronics in Agriculture. 2018, 145: 217-225.

【7】Davison A J, Reid I D, Molton N D, et al. MonoSLAM: real-time single camera SLAM [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007, 29(6): 1052-1067.

【8】Chen W, Wu T, Li Z, et al. A monocular vision SLAM algorithm based on particle filter [J]. Robot. 2008, 30(3): 242-247, 253.
陈伟, 吴涛, 李政, 等. 基于粒子滤波的单目视觉SLAM算法 [J]. 机器人. 2008, 30(3): 242-247, 253.

【9】Zhang Y, Chen Q, Luo Y. Three dimensional visual SLAM for mobile robots in indoor environments [J]. CAAI Transactions on Intelligent Systems. 2015, 10(4): 615-619.
张毅, 陈起, 罗元. 室内环境下移动机器人三维视觉SLAM [J]. 智能系统学报. 2015, 10(4): 615-619.

【10】Lin H C, Lü Q, Wei H, et al. Quadrotor autonomous flight and three-dimensional dense reconstruction based on VI-SLAM [J]. Acta Optica Sinica. 2018, 38(7): 0715004.
林辉灿, 吕强, 卫恒, 等. 基于VI-SLAM的四旋翼自主飞行与三维稠密重构 [J]. 光学学报. 2018, 38(7): 0715004.

【11】Soloviev A. Bates D, van Graas F. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution [J]. Navigation. 2007, 54(3): 189-205.

【12】Marks T K, Howard A, Bajracharya M, et al. Gamma-SLAM: using stereo vision and variance grid maps for SLAM in unstructured environments . [C]∥2008 IEEE International Conference on Robotics and Automation, May 19-23, 2008. Pasadena, CA, USA. New York: IEEE. 2008, 3717-3724.

【13】Murphy K, Russell S. Rao-blackwellised particle filtering for dynamic Bayesian networks [M]. ∥Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo methods in practice. Statistics for engineering and information science. New York, NY: Springer. 2001, 499-515.

【14】Schleicher D, Bergasa L M, Oca?a M, et al. Real-time hierarchical GPS aided visual SLAM on urban environments [M]. ∥Moreno-Díaz R, Pichler F, Quesada-Arencibia A. Computer aided systems theory-EUROCAST 2009. Lecture notes in computer science. Berlin, Heidelberg: Springer. 2009, 5717: 326-333.

【15】Chen X, He B W. A fast global registration algorithm based on correcting point cloud principal component coordinate system [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061003.
陈旭, 何炳蔚. 一种基于校正点云主成分坐标系的快速全局配准算法 [J]. 激光与光电子学进展. 2018, 55(6): 061003.

【16】Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age [J]. IEEE Transactions on Robotics. 2016, 32(6): 1309-1332.

【17】Latif Y, Cadena C, Neira J. Robust loop closing over time for pose graph SLAM [J]. The International Journal of Robotics Research. 2013, 32(14): 1611-1626.

【18】Iserles A. Munthe-Kaas H Z, N?rsett S P, et al. Lie-group methods [J]. Acta Numerica. 2000, 9: 215-365.

【19】Carlson J. Mapping large, urban environments with GPS-aided slam [D]. Pittsburgh: Carnegie Mellon University. 2010, 49-71.

【20】Endres F, Hess J, Sturm J, et al. 3-D mapping with an RGB-D camera [J]. IEEE Transactions on Robotics. 2014, 30(1): 177-187.

【21】Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain . [C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 1-5, 2018. Madrid, Spain. New York: IEEE. 2018, 4758-4765.

【22】Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM . [C]∥2016 IEEE International Conference on Robotics and Automation (ICRA), May 16-21, 2016. Stockholm, Sweden. New York: IEEE. 2016, 1271-1278.

引用该论文

Lu Shidong,Tu Meiyi,Luo Xiaoyong,Guo Chao. Laser SLAM Pose Optimization Algorithm Based on Graph Optimization Theory and GNSS[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081024

陆世东,涂美义,罗小勇,郭超. 基于图优化理论和GNSS激光SLAM位姿优化算法[J]. 激光与光电子学进展, 2020, 57(8): 081024

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF