首页 > 论文 > 光学学报 > 40卷 > 7期(pp:0727002--1)

基于标记配对相干态的量子密钥分配协议的统计涨落分析

Statistical Fluctuation Analysis of Quantum Key Distribution Protocols Based on Heralded Pair Coherent State

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了更加全面分析测量设备无关量子密钥分配协议,对基于标记配对相干态的测量设备无关量子密钥分配协议进行了统计涨落分析。首先分析了当光源在统计涨落时,随着发送信号脉冲数的增加,误码率和密钥生成率与传输距离的关系。结果表明,增加脉冲数能增大密钥生成率和最大传输距离,降低误码率,且基于标记配对相干态的协议性能比基于指示单光子源的协议性能要好。进一步分析了光源在统计涨落时,基于标记配对相干态的测量设备无关量子密钥分配协议在非对称信道中的密钥生成率与传输距离的关系,由仿真结果得知,非对称信道时的性能比对称信道时的性能好。

Abstract

In order to analyze the measurement-device-independent quantum key distribution protocol more comprehensively, the statistical fluctuation analysis of measurement-device-independent quantum key distribution protocols based on heralded pair coherent state is carried out. First, with the increase of the number of transmitted signal pulses in the statistical fluctuation of light source, the relationships of bit error rate and key generation rate with transmission distance are analyzed. The results show that increasing the number of pulses can improve the key generation rate and the maximum transmission distance, and can reduce the bit error rate. Moreover, the measurement-device-independent quantum key distribution protocol based on heralded pair coherent state has better performance than the one based on heralded single photon sources. When the light source is statistical fluctuating, the relationship between the key generation rate and the transmission distance of measurement-device-independent quantum key distribution protocol based on heralded pair coherent state in asymmetric channels is further analyzed, and the simulation results show that this protocol in asymmetric channels has better performance than that in symmetric channels.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:TN918

DOI:10.3788/AOS202040.0727002

所属栏目:量子光学

基金项目:国家自然科学基金;

收稿日期:2019-10-30

修改稿日期:2019-12-26

网络出版日期:2020-04-01

作者单位    点击查看

何业锋:西安邮电大学网络空间安全学院, 陕西 西安 710121西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121
赵艳坤:西安邮电大学通信与信息工程学院, 陕西 西安 710121
郭佳瑞:西安邮电大学网络空间安全学院, 陕西 西安 710121
李春雨:西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:赵艳坤(1364853816@qq.com)

备注:国家自然科学基金;

【1】Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM. 2001, 48(3): 351-406.

【2】Gottesman D, Lo H, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices . [C]//International Symposium on Information Theory, June 27-July 2, 2004, Chicago, IL, USA. New York: IEEE. 2003, 8178599.

【3】Bennett C H, Brassard G. An update on quantum cryptography [M]. //Blakley G R, Chaum D. Advances in Cryptology. Lecture Notes in Computer Science. Berlin: Springer. 1984, 196: 475-480.

【4】Bennett C H, Brassard G, Ekert A K. Quantum cryptography [J]. Scientific American. 1992, 267(4): 50-57.

【5】Wang Q, Wang X B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources [J]. Physical Review A. 2013, 88(5): 052332.

【6】Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution [J]. Laser & Optoelectronics Progress. 2018, 55(6): 060004.
朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制 [J]. 激光与光电子学进展. 2018, 55(6): 060004.

【7】Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters. 2000, 85(6): 1330-1333.

【8】Zhao Y, Fung C HF, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems [J]. Physical Review A. 2008, 78(4): 042333.

【9】Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution [J]. Applied Physics Letters. 2012, 101(7): 071107.

【10】Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols [J]. Quantum Information & Computation. 2007, 8(6): 0622-0635.

【11】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters. 2012, 108(13): 130503.

【12】Dong C, Zhao S H, Zhang N, et al. Measurement-device-independent quantum key distribution with odd coherent state [J]. Acta Physica Sinica. 2014, 63(20): 200304.
东晨, 赵尚弘, 张宁, 等. 奇相干光源的测量设备无关量子密钥分配研究 [J]. 物理学报. 2014, 63(20): 200304.

【13】Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution [J]. Physical Review A. 2013, 87(5): 052329.

【14】Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum- key-distribution protocol using decoy states with orbital angular momentum [J]. Chinese Physics B. 2015, 24(12): 120307.

【15】Zhu Z D, Zhao S H, Wang X Y, et al. Phase modulate free measurement device independent quantum key distribution [J]. Journal of Optoelectronics·Laser. 2018, 29(2): 181-186.
朱卓丹, 赵尚弘, 王星宇, 等. 相位调制无关的测量设备无关量子密钥分配协议 [J]. 光电子·激光. 2018, 29(2): 181-186.

【16】Tamaki K, Lo H K. Fung C H Fred, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw [J]. Physical Review A. 2012, 85(4): 042307.

【17】Abruzzo S, Kampermann H, Bruss D. Measurement-device-independent quantum key distribution with quantum memories [J]. Physical Review A. 2013, 89(1): 012301.

【18】Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source [J]. Acta Optica Sinica. 2014, 34(6): 0627002.
朱峰, 王琴. 基于指示单光子源的量子密钥分配协议 [J]. 光学学报. 2014, 34(6): 0627002.

【19】Zhou Y Y, Zhou X J, Su B B. A measurement-device-independent quantum key distribution protocol with a heralded single photon source [J]. Optoelectronics Letters. 2016, 12(2): 148-151.

【20】He Y F, Song C, Li D Q, et al. Asymmetric-channel quantum key distribution based on heralded single-photon sources [J]. Acta Optica Sinica. 2018, 38(3): 0327001.
何业锋, 宋畅, 李东琪, 等. 基于指示单光子源的非对称信道量子密钥分配 [J]. 光学学报. 2018, 38(3): 0327001.

【21】He Y F, Wang D, Yang H J, et al. Quantum key distribution based on heralded single-photon sources and quantum memory [J]. Chinese Journal of Lasers. 2019, 46(4): 0412001.
何业锋, 王登, 杨红娟, 等. 基于指示单光子源和量子存储的量子密钥分配 [J]. 中国激光. 2019, 46(4): 0412001.

【22】Zhang S L, Zou X B, Li C F, et al. A universal coherent source for quantum key distribution [J]. Science Bulletin. 2009, 54(11): 1863-1871.

【23】Wang X, Wang Y, Chen R K, et al. Measurement-device-independent quantum key distribution with heralded pair coherent state [J]. Laser Physics. 2016, 26(6): 065203.

【24】He Y F, Yang H J, Wang D. et al . Quantum key distribution based on heralded pair coherent state and orbital angular momentum [J]. Acta Optica Sinica. 2019, 39(4): 0427001.
何业锋, 杨红娟, 王登, 等. 基于标记配对相干态和轨道角动量的量子密钥分配 [J]. 光学学报. 2019, 39(4): 0427001.

【25】Yu Z W, Zhou Y H, Wang X B. Statistical fluctuation analysis for measurement-device- independent quantum key distribution with three-intensity decoy-state method [J]. Physical Review A. 2015, 91(3): 032318.

【26】Zhou X Y, Zhang C H, Guo G C, et al. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources [J]. Quantum Information Processing. 2016, 15(6): 2455-2464.

【27】Zhou Y Y, Zhang H Q, Zhou X J, et al. Analysis of the performance of decoy quantum key distribution based on heralded paired coherent state light source [J]. Acta Physica Sinica. 2013, 62(20): 200302.
周媛媛, 张合庆, 周学军, 等. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析 [J]. 物理学报. 2013, 62(20): 200302.

【28】Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state [J]. Quantum Information Processing. 2016, 15(10): 4253-4263.

【29】Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution [J]. Physical Review A. 2012, 86(6): 062319.

引用该论文

He Yefeng,Zhao Yankun,Guo Jiarui,Li Chunyu. Statistical Fluctuation Analysis of Quantum Key Distribution Protocols Based on Heralded Pair Coherent State[J]. Acta Optica Sinica, 2020, 40(7): 0727002

何业锋,赵艳坤,郭佳瑞,李春雨. 基于标记配对相干态的量子密钥分配协议的统计涨落分析[J]. 光学学报, 2020, 40(7): 0727002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF