Photonics Research, 2020, 8 (11): 11001697, Published Online: Oct. 19, 2020  

Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform Download: 609次

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China
2 School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
3 Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
4 School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
5 e-mail: chyuan@phy.ecnu.edu.cn
6 e-mail: lqchen@phy.ecnu.edu.cn
Abstract
Atom–light interface is at the core of quantum metrology and quantum information science. Associated noises during interaction processes are always inevitable and adverse. In this paper, we perform the stimulated Raman scattering (SRS) in a hot Rb87 vapor cell and demonstrate the reduction of related noises originated from mode mismatch via optimizing the temporal waveform of the input seed. By using the seed with the optimized mode, the intensity fluctuation of the signal field generated in atom–light interaction is decreased by 4.3 dB. Furthermore, the fluctuation of the intensity difference between the signal and atomic spin wave is reduced by 3.1 dB. Such a temporal mode-cleaning method can be applied to improve the precision of atom interferometry using SRS and should be helpful for quantum information processing based on an atom–light correlated system.

Xiaotian Feng, Zhifei Yu, Bing Chen, Shuying Chen, Yuan Wu, Donghui Fan, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang. Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform[J]. Photonics Research, 2020, 8(11): 11001697.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!