首页 > 论文 > 光学学报 > 39卷 > 9期(pp:930006--1)

用于近红外宽带腔增强吸收光谱的小波去噪

Wavelet Denoising in Near-Infrared Broadband Cavity-Enhanced Absorption Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了有效抑制检测系统的噪声,提高气体浓度的反演精度,研究了近红外宽带腔增强气体传感系统的小波去噪方法。小波去噪方法的优化分析结果表明,选择db2小波函数作为小波基对含噪信号进行6级分层处理,并选择heursure阈值估计方法,采用局部阈值方式对噪声部分小波系数进行置零处理,可达到最优去噪效果。将近红外宽带腔增强吸收光谱技术与高分辨率傅里叶变换红外光谱仪相结合,建立了用于甲烷检测的气体传感系统,使用最小二乘拟合算法对去噪前后的甲烷吸收系数进行反演。结果表明,采用小波去噪后,反演浓度更接近真实值,反演精度提高7%,信噪比提高90%,系统检测下限降低45%,证明小波去噪算法可以有效提高系统的检测精度。

Abstract

In order to effectively suppress the noise in gas detection and improve the inversion precision of gas concentration, we investigate a wavelet denoising algorithm for near-infrared broadband cavity-enhanced gas sensing system. Optimization analysis of wavelet denoising shows that it can achieve the optimal denoising effect by using db2 wavelet function as the wavelet base to perform 6-layer denoising on the polluted signal, and at the same time, by using heursure threshold estimation method and local threshold to zero the noise part wavelet coefficient. The near-infrared broadband cavity-enhanced absorption spectroscopy technique combined with a high-resolution Fourier transform infrared spectrometer is used to establish a gas sensing system for methane detection. The concentration inversion of methane absorption coefficient before and after wavelet denoising is performed using a least square fitting algorithm. Experimental results show that the inversed concentration results with wavelet denoising are closer to the true value than those without denoising. The inversion accuracy is improved by 7%, the signal-to-noise ratio is increased by 90%, and the system detection limit is reduced by 45%. It is evidenced that the wavelet denoising algorithm can effectively improve the detection accuracy.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0930006

所属栏目:光谱学

基金项目:国家重点研发计划、国家自然科学基金、吉林省重点科技研发计划、吉林省中青年科技创新领军人才及团队项目、吉林省省级产业创新专项资金;

收稿日期:2019-04-09

修改稿日期:2019-05-21

网络出版日期:2019-09-01

作者单位    点击查看

姚丹:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012
郑凯元:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012
刘梓迪:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012
李俊豪:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012
郑传涛:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012
王一丁:吉林大学集成光电子学国家重点联合实验室,电子科学与工程学院, 吉林 长春 130012吉林省红外气体传感技术工程研究中心, 吉林 长春 130012

联系人作者:郑传涛(zhengchunatao@jlu.edu.cn)

备注:国家重点研发计划、国家自然科学基金、吉林省重点科技研发计划、吉林省中青年科技创新领军人才及团队项目、吉林省省级产业创新专项资金;

【1】Zheng K Y, Zheng C T, He Q X et al. Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes. Optics Express. 26(20), 26205-26216(2018).

【2】Song F, Zheng C T, Yu D et al. Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes. Applied Physics B. 124(3), (2018).

【3】Dong M, Zheng C T, Yao D et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Optics Express. 26(9), 12081-12091(2018).

【4】Miao S Z, Yao D, Zhong G Q et al. Infrared acetylene sensor based on orthogonal lock-in amplifier and segmental fast Fourier transformation. Chinese Journal of Lasers. 45(9), (2018).
苗澍茁, 姚丹, 钟国强 等. 基于正交锁相放大器与分段快速傅里叶变换的红外乙炔传感器. 中国激光. 45(9), (2018).

【5】Zheng K Y, Zheng C T, Zhang Y et al. Review of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for gas sensing. Sensors. 18(11), 3646-3670(2018).

【6】Zheng K Y, Zheng C T, Liu Z D et al. Near-infrared broadband cavity-enhanced sensor system for methane detection using a wavelet-denoising assisted Fourier-transform spectrometer. The Analyst. 143(19), 4699-4706(2018).

【7】Fang B, Zhao W X, Xu X Z et al. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide. Optics Express. 25(22), 26910-26922(2017).

【8】Denzer W, Hancock G, Islam M et al. Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes. Analyst. 136(4), 801-806(2011).

【9】Aalto A, Genty G, Laurila T et al. Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources. Optics Express. 23(19), 25225-25234(2015).

【10】Li J S, Yu B L, Zhao W X et al. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Applied Spectroscopy Reviews. 49(8), 666-691(2014).

【11】Li C L, Guo X Q, Ji W H et al. Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms. Optical and Quantum Electronics. 50(7), 275-285(2018).

【12】Zheng C T, Ye W L, Huang J Q et al. Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique. Sensors and Actuators B: Chemical. 190, 249-258(2014).

【13】Tian G. XLⅢ. Li G S. Tunable diode laser spectrometry signal de-noising using discrete wavelet transform for molecular spectroscopy study. Optica Applicata. 803-815(2013).

【14】Varma R M, Venables D S, Ruth A A et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Applied Optics. 48(4), B159-B171(2009).

【15】Wang Z L, Chang J, Zhang S S et al. An improved denoising method in RDTS based on wavelet transform modulus maxima. IEEE Sensors Journal. 15(2), 1061-1067(2015).

【16】Xu Y S, Weaver J B, Healy D M et al. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing. 3(6), 747-758(1994).

【17】Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory. 41(3), 613-627(1995).

【18】Mappe-Fogaing I, Joly L, Durry G et al. Wavelet denoising for infrared laser spectroscopy and gas detection. Applied Spectroscopy. 66(6), 700-710(2012).

【19】Wen H Y. Research on deformation analysis model based on wavelet transform theory. Wuhan: Wuhan University. 41-84(2004).
文鸿雁. 基于小波理论的变形分析模型研究. 武汉: 武汉大学. 41-84(2004).

【20】Wang X F. Selection and optimization of wavelet base. Journal of Zhuzhou Institute of Technology. 17(5), 33-35(2003).
汪新凡. 小波基选择及其优化. 株洲工学院学报. 17(5), 33-35(2003).

【21】She P G. Based on signal matching and the optimal decomposition level of wavelet denoising method research. Yangzhou: Yangzhou University. 46-56(2014).
佘鹏果. 基于信号匹配和最优分解层的小波去噪方法研究. 扬州: 扬州大学. 46-56(2014).

【22】Zhang T X and Huang X X. Realization of wavelet threshold denoising method based on Matlab for image processing. Modern Electronics Technique. 36(5), 103-105(2013).
张天祥, 黄小欣, . 基于. Matlab 实现小波阈值去噪的图像处理方法. 现代电子技术. 36(5), 103-105(2013).

引用该论文

Dan Yao,Kaiyuan Zheng,Zidi Liu,Junhao Li,Chuantao Zheng,Yiding Wang. Wavelet Denoising in Near-Infrared Broadband Cavity-Enhanced Absorption Spectroscopy[J]. Acta Optica Sinica, 2019, 39(9): 0930006

姚丹,郑凯元,刘梓迪,李俊豪,郑传涛,王一丁. 用于近红外宽带腔增强吸收光谱的小波去噪[J]. 光学学报, 2019, 39(9): 0930006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF