首页 > 论文 > 光学学报 > 39卷 > 7期(pp:728011--1)

可调谐交叉领结形石墨烯阵列结构等离子体折射率传感器

Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计一种新颖的交叉领结形石墨烯阵列结构等离子体折射率传感器。利用石墨烯与电介质交界面产生的表面等离子体效应,在中红外波段获得双共振透射现象,结合石墨烯的电可调特性来实现透射谱的动态调制,采用时域有限差分法研究该结构中石墨烯的化学势、层数及几何参数对双共振透射现象的影响。结果表明:通过改变石墨烯的化学势及层数能够实现共振位置的调谐;优化结构参数后,该结构具有较好的传感性能和双共振透射现象,2个共振谷的灵敏度分别高达(1280±24) nm/RIU和(2800±49) nm/RIU,品质因数分别为17.1 RIU -1和12.3 RIU -1。研究结果为石墨烯等离子体生物传感器的设计提供了理论依据。

Abstract

In this study, we design a plasma refractive index sensor with a cross tie-shaped graphene array structure. Further, the double-resonance transmission phenomenon in the mid-infrared band can be obtained by using the surface plasmon effect produced by the interface between the graphene and dielectric, and the dynamic regulation of the transmission spectrum can be realized by combining the electrically adjustable characteristics of graphenes. Subsequently, the effects of the chemical potential, number of layers, and geometric parameters of graphenes on the double-resonance transmission phenomenon in the structure are studied using the finite-difference time-domain method. The results denote that the resonance position can be tuned by changing the chemical potential and the number of layers of the graphene. Compared with a traditional sensor, this structure exhibits better sensing performance and double-resonance transmission phenomenon after the structural parameter optimization. The sensitivities of two resonance valleys are as high as (1280±24) and (2800±49) nm/RIU with quality factors of 17.1 and 12.3 RIU -1, respectively. These results provide a theoretical basis for the graphene plasma biosensor design.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0728011

所属栏目:遥感与传感器

基金项目:国家自然科学基金、广西自然科学基金、桂林电子科技大学研究生优秀学位论文培育项目、桂林电子科技大学大学生创新创业计划、桂林电子科技大学研究生教育创新计划、桂林电子科技大学广西精密导航技术与应用重点实验室资助课题;

收稿日期:2019-01-14

修改稿日期:2019-04-01

网络出版日期:2019-07-01

作者单位    点击查看

肖功利:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨秀华:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨宏艳:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
窦婉滢:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
徐俊林:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
韦清臣:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李海鸥:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
张法碧:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李琦:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
陈永和:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
傅涛:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
孙堂友:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004

联系人作者:肖功利(xgl.hy@126.com)

备注:国家自然科学基金、广西自然科学基金、桂林电子科技大学研究生优秀学位论文培育项目、桂林电子科技大学大学生创新创业计划、桂林电子科技大学研究生教育创新计划、桂林电子科技大学广西精密导航技术与应用重点实验室资助课题;

【1】Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films. Science. 306(5696), 666-669(2004).

【2】Li Y, Zhang F, Chen H et al. Research progress of the process technology for graphene micro/nano structures. Micronanoelectronic Technology. 50(4), 255-263(2013).
李艳, 张芳, 陈辉 等. 石墨烯微纳结构加工技术的研究进展. 微纳电子技术. 50(4), 255-263(2013).

【3】Xu J J, Wang K, Zu S Z et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 4(9), 5019-5026(2010).

【4】Gaspari F, Shkrebtii A I, McNelles P et al. 1362: mrss11-1362-qq09-18. its non-destructive optical characterization. MRS Proceedings. (2011).

【5】Zhao Y F, Yue T X, Jin L R et al. The application of graphene-based electrochemical sensor in environmental monitoring. Journal of Environmental Management College of China. 22(4), 56-59, 70(2012).
赵燕芳, 岳太星, 金玲仁 等. 基于石墨烯构建的电化学传感器在环境监测中的应用. 中国环境管理干部学院学报. 22(4), 56-59, 70(2012).

【6】Yang K, Gong H, Shi X Z et al. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 34(11), 2787-2795(2013).

【7】Du W. Research on graphene-based active optoelectronics devices. Hangzhou: Zhejiang University. (2015).
杜威. 石墨烯光电子有源器件的研究. 杭州: 浙江大学. (2015).

【8】Ye C Y, Zhu Z H, Xu W et al. Electrically tunable absorber based on nonstructured graphene. Journal of Optics. 17(12), (2015).

【9】Gan C H, Chu H S and Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B. 85(12), (2012).

【10】Wang F, Zhang Y, Tian C et al. Gate-variable optical transitions in graphene. Science. 320(5873), 206-209(2008).

【11】Lu W B, Zhu W, Xu H J et al. Flexible transformation plasmonics using graphene. Optics Express. 21(9), 10475-10482(2013).

【12】Woessner A, Lundeberg M B, Gao Y D et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nature Materials. 14(4), 421-425(2015).

【13】Chen J J, Zeng Y, Xu X B et al. Plasmonic absorption enhancement in elliptical graphene arrays. Nanomaterials. 8(3), (2018).

【14】Hu X and Wang J. High figure of merit graphene modulator based on long-range hybrid plasmonic slot waveguide. IEEE Journal of Quantum Electronics. 53(3), (2017).

【15】Feng Y C, Liu Y W, Wang X H et al. Tunable multichannel plasmonic filter based on a single graphene sheet on a Fibonacci quasiperiodic structure. Plasmonics. 13(2), 653-659(2018).

【16】Tao L Q, Zhang K N, Tian H et al. Graphene-paper pressure sensor for detecting human motions. ACS Nano. 11(9), 8790-8795(2017).

【17】Zhou P and Zheng G G. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application. Optical Materials. 78, 471-476(2018).

【18】Wu J, Zhou C H, Yu J J et al. Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays. Optics & Laser Technology. 59, 99-103(2014).

【19】Bai Y K, Wang B and Ma X R. Versatile infrared refractive-index sensor based on surface plasmon resonance in graphene sheet. Optical Engineering. 57(3), (2018).

【20】Zhao Y, Hu X, Chen G X et al. Infrared biosensors based on graphene plasmonics: modeling. Physical Chemistry Chemical Physics. 15(40), 17118-17125(2013).

【21】Vasi B and Isi G. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. Journal of Applied Physics. 113(1), (2013).

【22】Wei W, Nong J P, Zhang G W et al. An infrared biosensor based on graphene plasmonic for integrated nanofluidic analysis. Proceedings of SPIE. 9278, (2014).

【23】Wei W, Nong J P, Tang L L et al. Reflection-type infrared biosensor based on surface plasmonics in graphene ribbon arrays. Chinese Optics Letters. 13(8), (2015).

【24】Rodrigo D, Limaj O, Janner D et al. Mid-infrared plasmonic biosensing with graphene. Science. 349(6244), 165-168(2015).

【25】Han X and Wang T. High sensitive refractive index sensor in a graphene-based nanoribbon waveguide system based on the finite-difference time-domain method. [C]//2016 IEEE International Conference on Computational Electromagnetics (ICCEM), February 23-25, 2016, Guangzhou, China. New York: IEEE. 265-267(2016).

【26】Zundel L and Manjavacas A. Spatially resolved optical sensing using graphene nanodisk arrays. ACS Photonics. 4(7), 1831-1838(2017).

【27】Cen C L, Lin H, Huang J et al. A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors. 18(12), (2018).

【28】Chen Y, Tian Y N, He L et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure. Chinese Journal of Lasers. 45(1), (2018).
陈颖, 田亚宁, 何磊 等. 亚波长金属光栅/电介质/金属混合波导传感结构的研究. 中国激光. 45(1), (2018).

【29】Zhang D Y, Zhao L, Wang X X et al. A refractive index sensor based on composite structure of dielectric grating with metal films. Acta Optica Sinica. 37(11), (2017).
张东阳, 赵磊, 王向贤 等. 一种基于介质光栅金属薄膜复合结构的折射率传感器. 光学学报. 37(11), (2017).

【30】Hanson G W. Dyadic Green''s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics. 103(6), (2008).

【31】Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure. Acta Optica Sinica. 38(1), (2018).
李志全, 冯丹丹, 李欣 等. 基于石墨烯表面等离激元的双支节结构光电调制器. 光学学报. 38(1), (2018).

【32】He S L, Zhang X Z and He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Optics Express. 21(25), 30664-30673(2013).

【33】Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano. 6(9), 7806-7813(2012).

【34】Jiang X Q, Liu Z B and Tian J G. The optical properties of graphene and its application. Progress in Physics. 37(1), 22-36(2017).
姜小强, 刘智波, 田建国. 石墨烯光学性质及其应用研究进展. 物理学进展. 37(1), 22-36(2017).

【35】Nikitin A Y and Guinea F. Garcia-Vidal F J, et al. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Physical Review B. 85(8), (2012).

【36】Han X and Wang T. Tunable plasmon induced transparency in a graphene-based waveguide structure and it''s applications in sensing. Proceedings of SPIE. 10343, (2017).

引用该论文

Xiao Gongli,Yang Xiuhua,Yang Hongyan,Dou Wanying,Xu Junlin,Wei Qingchen,Li Haiou,Zhang Fabi,Li Qi,Chen Yonghe,Fu Tao,Sun Tangyou. Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure[J]. Acta Optica Sinica, 2019, 39(7): 0728011

肖功利,杨秀华,杨宏艳,窦婉滢,徐俊林,韦清臣,李海鸥,张法碧,李琦,陈永和,傅涛,孙堂友. 可调谐交叉领结形石墨烯阵列结构等离子体折射率传感器[J]. 光学学报, 2019, 39(7): 0728011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF