光学学报, 2005, 25 (9): 1219, 网络出版: 2006-05-22   

非即变相位共轭反馈对半导体激光器动态特性的影响

The Influence of Non-Instantaneous Phase Conjugate Optical Feedback on the Dynamics of Semiconductor Laser
作者单位
西南交通大学信息科学与技术学院,成都 610031
摘要
从四波混频产生相位共轭的物理原因出发,定义了相位共轭镜(PCM)的响应时间,建立起非即变相位共轭反馈条件下半导体激光器的外腔模型。以响应时间及频率失调为参变量,对其分岔及噪声等动态行为进行数值分析。结果表明,不考虑噪声影响时,增加相位共轭镜响应时间会使混沌带出现的次数和范围得到较大的抑制,当响应时间增大到1.5 ns时,混沌带消失,半导体激光器保持稳定的单周期状态;考虑噪声影响后,随着响应时间的相对强度噪声(RIN)可减小几dB甚至十几dB,产生突变需要的反馈量也增大一个数量级以上,且其频谱的峰值向高频方向移动;另外,由于共轭反馈引起的频率失调低于半导体激光器激射频率3个数量级以上,它只对分岔特性有影响,对相对强度噪声的影响几乎为零。
Abstract
Based on the physical origin of phase conjugation generated by four wave mixing, the response time of phase conjugate mirror is defined and the external cavity model for laser diode under non-instantaneous phase conjugate optical feedback is set up. Numerical analysis is given to discuss the influence of response time and frequency detuning on the characteristics of bifurcation and noise. The results indicate that the numbers and the range of chaotic bands can be restrained greatly by increasing the phase conjugate mirror's response time when the influeme of noise is considered. When the response time reaches 1.5 ns, all the instabilities of laser diode are suppressed. If noises considered, the intensity of relative intensity noise decreases by several dB or even tens dB with the increase of response time and its spectrum peak moves to higher frequency , the feedback rate for coherence collapse also increases by one order. Since the frequency detuning is smaller compared to laser diode lasing frequency by more than three orders of magnitudes, it only influences the bifurcation diagram and almost have no influence on relative intensity noise.

张伟利, 潘炜, 罗斌, 王梦遥, 邹喜华. 非即变相位共轭反馈对半导体激光器动态特性的影响[J]. 光学学报, 2005, 25(9): 1219. 张伟利, 潘炜, 罗斌, 王梦遥, 邹喜华. The Influence of Non-Instantaneous Phase Conjugate Optical Feedback on the Dynamics of Semiconductor Laser[J]. Acta Optica Sinica, 2005, 25(9): 1219.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!