Frontiers of Optoelectronics, 2019, 12 (1): 0152–68, 网络出版: 2019-09-08   

A review of multiple optical vortices generation: methods and applications

A review of multiple optical vortices generation: methods and applications
作者单位
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.
参考文献

[1] Allen L, BeijersbergenMW, Spreeuw R J C,Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189

[2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204

[3] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313

[4] Dholakia K, Cizmár T. Shaping the future of manipulation. Nature Photonics, 2011, 5(6): 335–342

[5] Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914

[6] Padgett M, Bowman R. Tweezers with a twist. Nature Photonics, 2011, 5(6): 343–348

[7] Dennis M R, King R P, Jack B, O’Holleran K, Padgett M J. Isolated optical vortex knots. Nature Physics, 2010, 6(2): 118–121

[8] Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Optics Express, 2006, 14(9): 3792–3805

[9] Mair A, Vaziri A,Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316

[10] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456

[11] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496

[12] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H,Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548

[13] Willner A E, Wang J, Huang H. A different angle on light communications. Science, 2012, 337(6095): 655–656

[14] Krenn M, Handsteiner J, Fink M, Fickler R, Ursin R, Malik M, Zeilinger A. Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653

[15] Wang A, Zhu L, Chen S, Du C, Mo Q, Wang J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Optics Express, 2016, 24(11): 11716–11726

[16] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106

[17] Wang J. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28

[18] Wang J. Data information transfer using complex optical fields: a review and perspective. Chinese Optics Letters, 2017, 15(3): 030005–030009

[19] Zhu L, Liu J, Mo Q, Du C, Wang J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale fewmode fiber. Optics Express, 2016, 24(15): 16934–16944

[20] Zhu L,Wang A, Chen S, Liu J, Mo Q, Du C,Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645

[21] Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047

[22] Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Optics Express, 2015, 23(23): 29457–29466

[23] Jung Y, Kang Q, Zhou H, Zhang R, Chen S,Wang H, Yang Y, Jin X, Payne F P, Alam S, Richardson D J. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. Journal of Lightwave Technology, 2017, 35(8): 1363–1368

[24] Zhu G, Hu Z,Wu X, Du C, Luo W, Chen Y, Cai X, Liu J, Zhu J, Yu S. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Optics Express, 2018, 26(2): 594–604

[25] Zhu L, Zhu G, Wang A, Wang L, Ai J, Chen S, Du C, Liu J, Yu S, Wang J. 18 km low-crosstalk OAM +WDM transmission with 224 individual channels enabled by a ring-core fiber with large highorder mode group separation. Optics Letters, 2018, 43(8): 1890–1893

[26] Padgett M, Courtial J, Allen L. Light’s orbital angular momentum. Physics Today, 2004, 57(5): 35–40

[27] Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402

[28] Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047

[29] Zhu L,Wang A, Chen S, Liu J, Mo Q, Du C,Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645

[30] Lavery M P, Speirits F C, Barnett S M, Padgett M J. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540

[31] Lavery M, Barnett S, Speirits F, Padgett M. Observation of the rotational doppler shift of a white-light, orbital-angular-momentumcarrying beam backscattered from a rotating body. Optica, 2014, 1(1): 1–4

[32] Belmonte A, Rosales-Guzmán C, Torres J P. Measurement of flow vorticity with helical beams of light. Optica, 2015, 2(11): 1002–1005

[33] Fang L, Padgett M J,Wang J. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photonics Reviews, 2017, 11(6): 1700183

[34] Yan Y, Yue Y, Huang H, Ren Y, Ahmed N, Tur M, Dolinar S, Willner A. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Optics Letters, 2013, 38(19): 3930–3933

[35] Lin J, Yuan X C, Tao S H, Burge R E. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Optics Letters, 2005, 30(24): 3266–3268

[36] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Optics Express, 2015, 23(20): 26221–26233

[37] Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports, 2014, 4(1): 7441

[38] Moreno I, Davis J A, Cottrell D M, Zhang N, Yuan X C. Encoding generalized phase functions on Dammann gratings. Optics Letters, 2010, 35(10): 1536–1538

[39] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings. Optics Letters, 2010, 35(20): 3495–3497

[40] Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Scientific Reports, 2015, 5(1): 9662

[41] Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X C. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light, Science & Applications, 2015, 4(3): e257

[42] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601

[43] Mirhosseini M, Malik M, Shi Z, Boyd R W. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4(1): 2781

[44] Lavery M P J, Berkhout G C G, Courtial J, Padgett M J. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 2011, 13(6): 064006

[45] Huang H, Milione G, Lavery M P, Xie G, Ren Y, Cao Y, Ahmed N, An Nguyen T, Nolan D A, Li M J, Tur M, Alfano R R, Willner A E. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5: 14931

[46] Li S, Wang J, Zhang X, Zhu L, Li C, Yang Q. Demonstration of simultaneous 1-to-34 multicasting of OFDM/OQAM 64-QAM signal from single Gaussian mode to multiple orbital angular momentum (OAM) modes. In: Proceedings of Asia Communications and Photonics Conference 2013 Postdeadline. Optical Society of America, 2013, paper AF2E.5

[47] Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Scientific Reports, 2015, 5(1): 9677

[48] Li S, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Optics Letters, 2016, 41(7): 1482–1485

[49] Zhu L, Wang J. Demonstration of obstruction-free data-carrying Nfold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466

[50] Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501

[51] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28

[52] Durnin J, Miceli J J Jr, Eberly J H. Comparison of Bessel and Gaussian beams. Optics Letters, 1988, 13(2): 79

[53] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Optics Letters, 2015, 40(21): 4827–4830

[54] Zhu L, Wang J. Demonstration of obstruction-free data-carrying Nfold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466

[55] Chen S, Li S, Zhao Y, Liu J, Zhu L,Wang A, Du J, Shen L,Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Optics Letters, 2016, 41(20): 4680–4683

[56] Li S, Wang J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Scientific Reports, 2017, 7(1): 43233

[57] Zhan Q. Cylindrical vector beams from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57

[58] Milione G, Lavery M P J, Huang H, Ren Y, Xie G, Nguyen T A, Karimi E, Marrucci L, Nolan D A, Alfano R R,Willner A E. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters, 2015, 40(9): 1980–1983

[59] Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 2015, 40(21): 4843–4846

[60] Liu J, Li S, Zhu L,Wang A, Chen S, Klitis C, Du C, Mo Q, Sorel M, Yu S, Cai X, Wang J. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light, Science & Applications, 2018, 7(3): 17148

[61] Shwartz S, Golub M, Ruschin S. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre-Gaussian modes. Applied Optics, 2013, 52(12): 2659–2669

[62] Xie G, Ren Y, Yan Y, Huang H, Ahmed N, Li L, Zhao Z, Bao C, Tur M, Ashrafi S, Willner A E. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. Optics Letters, 2016, 41(15): 3447–3450

[63] O’Neil A T, Courtial J. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Optics Communications, 2000, 181(1–3): 35–45

[64] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

[65] Guan B, Scott R P, Qin C, Fontaine N K, Su T, Ferrari C, Cappuzzo M, Klemens F, Keller B, Earnshaw M, Yoo S J B. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Optics Express, 2014, 22(1): 145–156

[66] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer. Optics Express, 2018, 26(10): 13183–13194

[67] Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934

[68] Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399

[69] Karimi E, Schulz S A, De Leon I, Qassim V, Upham J, Boyd R W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light, Science & Applications, 2014, 3(5): e167

[70] Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chinese Optics Letters, 2018, 16(5): 050006

[71] Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah K W, Li J. Spinenabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151

, . A review of multiple optical vortices generation: methods and applications[J]. Frontiers of Optoelectronics, 2019, 12(1): 0152–68. Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Frontiers of Optoelectronics, 2019, 12(1): 0152–68.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!