Frontiers of Optoelectronics, 2019, 12 (1): 0188–96, 网络出版: 2019-09-08  

Detection of photonic orbital angular momentum with micro- and nano-optical structures

Detection of photonic orbital angular momentum with micro- and nano-optical structures
作者单位
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469, USA
3 Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
4 School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
5 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
摘要
Abstract
Light with an optical orbital angular momentum (OAM) has attracted an increasing amount of interest and has found its way into many disciplines ranging from optical trapping, edge-enhanced microscopy, high-speed optical communication, and secure quantum teleportation to spin-orbital coupling. In a variety of OAM-involved applications, it is crucial to discern different OAM states with high fidelity. In the current paper, we review the latest research progress on OAM detection with micro- and nano-optical structures that are based on plasmonics, photonic integrated circuits (PICs), and liquid crystal devices. These innovative OAM sorters are promising to ultimately achieve the miniaturization and integration of high-fidelity OAM detectors and inspire numerous applications that harness the intriguing properties of the twisted light.
参考文献

[1] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204

[2] Allen L, BeijersbergenMW, Spreeuw R J C,Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189

[3] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496

[4] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106

[5] Courtial J, Padgett M J. Limit to the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle. Optics Communications, 2000, 173(1–6): 269–274

[6] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser & Photonics Reviews, 2011, 5(1): 81–101

[7] Dholakia K, Simpson N, Padgett M, Allen L. Second-harmonic generation and the orbital angular momentum of light. Physical Review A, 1996, 54(5): R3742–R3745

[8] Mair A, Vaziri A,Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316

[9] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456

[10] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25): 257901

[11] Shalaev V M, Kawata S. Nanophotonics with Surface Plasmons. New York: Elsevier, 2007

[12] Liu A, Rui G, Ren X, Zhan Q, Guo G, Guo G. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Optics Express, 2012, 20(22): 24151–24159

[13] Gorodetski Y, Shitrit N, Bretner I, Kleiner V, Hasman E. Observation of optical spin symmetry breaking in nanoapertures. Nano Letters, 2009, 9(8): 3016–3019

[14] Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Letters, 2010, 10(2): 529–536

[15] Cho S W, Park J, Lee S Y, Kim H, Lee B. Coupling of spin and angular momentum of light in plasmonic vortex. Optics Express, 2012, 20(9): 10083–10094

[16] Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042

[17] Yang S, Chen W, Nelson R L, Zhan Q. Miniature circular polarization analyzer with spiral plasmonic lens. Optics Letters, 2009, 34(20): 3047–3049

[18] Chen W, Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Optics Letters, 2009, 34(6): 722–724

[19] Liu A P, Xiong X, Ren X F, Cai Y J, Rui G H, Zhan Q W, Guo G C, Guo G P. Detecting orbital angular momentum through division-ofamplitude interference with a circular plasmonic lens. Scientific Reports, 2013, 3(1): 2402

[20] Rui G, Ma Y, Gu B, Zhan Q, Cui Y. Multi-channel orbital angular momentum detection with metahologram. Optics Letters, 2016, 41(18): 4379–4382

[21] Genevet P, Lin J, Kats M A, Capasso F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nature Communications, 2012, 3: 1278

[22] Kerber R M, Fitzgerald J M, Reiter D E, Oh S S, Hess O. Reading the orbital angular momentum of light using plasmonic nanoantennas. ACS Photonics, 2017, 4(4): 891–896

[23] Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618

[24] Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fédéli J M, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express, 2006, 14(22): 10838–10843

[25] Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327

[26] Rui G, Gu B, Cui Y, Zhan Q. Detection of orbital angular momentum using a photonic integrated circuit. Scientific Reports, 2016, 6(1): 28262

[27] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

[28] Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultracompact integrated vortex emitters. Nature Communications, 2014, 5: 4856

[29] Yang Y, Huang Y, Guo W, Lu Q, Donegan J F. Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators. Optics Express, 2010, 18(12): 13057

[30] Fontaine N K, Doerr C R, Buhl L.Efficient multiplexing and demultiplexing of freespace orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference & Exposition. 2012, OTu1I.2

[31] Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R. Generating and identifying optical orbital angular momentum with silicon photonic circuits. Optics Letters, 2014, 39(20): 5977–5980

[32] Liu A, Zou C, Ren X, Wang Q, Guo G. On-chip generation and control of the vortex beam. Applied Physics Letters, 2016, 108(18): 181103

[33] Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402

[34] Han W, Yang Y, Cheng W, Zhan Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 2013, 21(18): 20692–20706

[35] Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601

[36] Malik M, Mirhosseini M, LaveryMP, Leach J, PadgettMJ, Boyd R W. Direct measurement of a 27-dimensional orbital-angularmomentum state vector. Nature Communications, 2014, 5: 3115

[37] O’Sullivan M N, Mirhosseini M, Malik M, Boyd R W. Near-perfect sorting of orbital angular momentum and angular position states of light. Optics Express, 2012, 20(22): 24444–24449

[38] Mirhosseini M, Malik M, Shi Z, Boyd R W. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4: 2781

[39] Wan C, Chen J, Zhan Q. Compact and high-resolution optical orbital angular momentum sorter. APL Photonics, 2017, 2(3): 031302

[40] Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics. Optics Letters, 2017, 42(3): 551–554

[41] Dai K, Gao C, Zhong L, Na Q, Wang Q. Measuring OAM states of light beams with gradually-changing-period gratings. Optics Letters, 2015, 40(4): 562–565

[42] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Scientific Reports, 2017, 7: 40781

[43] D’Ambrosio V, Nagali E, Walborn S P, Aolita L, Slussarenko S, Marrucci L, Sciarrino F. Complete experimental toolbox for alignment-free quantum communication. Nature Communications, 2012, 3: 961

, , , . Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Frontiers of Optoelectronics, 2019, 12(1): 0188–96. Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Frontiers of Optoelectronics, 2019, 12(1): 0188–96.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!