人工晶体学报, 2020, 49 (12): 2350, 网络出版: 2021-01-26  

功能模板导向合成介孔三氧化钨及其光电化学性能

Synthesis by Functional-Template Induced Methodology and Photoelectrochemical Performance of Mesoporous Tungsten Trioxide
作者单位
1 北方民族大学材料科学与工程学院,银川 750021
2 北方民族大学化学与化学工程学院,银川 750021
摘要
以钨酸(H2WO4)为钨前驱体,十二烷胺(DDA)为模板剂,利用模板剂的结构导向功能,合成了比表面积为57.3 m2·g-1的介孔三氧化钨(DDA-WO3),是未用DDA制备的非介孔WO3(H2WO4-WO3)的2.35倍。X射线衍射(XRD)结果表明,400 ℃下煅烧的DDA-WO3是具有单斜晶型结晶孔壁的无序介孔结构。此外,400~550 ℃下煅烧的DDA-WO3的结晶度均高于同条件的H2WO4-WO3。400 ℃下的DDA-WO3/FTO(掺氟氧化锡)在1.0 V的Ag/AgCl偏压作用下,可以产生0.18 mA·cm-2的饱和光电流,是H2WO4-WO3/FTO(0.06 mA·cm-2)的3倍。增强的光电化学(PEC)活性主要因为DDA-WO3/FTO的大表面积降低了低结晶度对PEC性能的不利影响,成为影响PEC活性的主要因素。500 ℃煅烧导致了DDA-WO3/FTO介孔结构的坍塌,但高的结晶度仍然保持其优越的PEC催化活性。
Abstract
Mesoporous tungsten trioxide (DDA-WO3) was prepared using tungstic acid (H2WO4) as a tungsten precursor, dodecylamine (DDA) as a surfactant template which has structure guiding function. The specific surface area (57.3 m2·g-1) of DDA-WO3 was 2.35 times of 24.5 m2·g-1for WO3 (H2WO4-WO3) prepared without DDA. X-ray diffraction (XRD) result of the DDA-WO3 calcined at 400 ℃ indicates that a crystalline framework with disordered arrangement of pores. The crystallinity of DDA-WO3 calcined at 400~550 ℃ is higher than each of H2WO4-WO3. DDA-WO3/FTO (SnO2∶F) calcined at 400 ℃ generates photoanodic current density of 0.18 mA·cm-2 at 1.0 V versus Ag/AgCl, which is about 3 times higher than that of the H2WO4-WO3/FTO(0.06 mA·cm-2). The enhanced photoelectrochemical (PEC) performance of DDA-WO3/FTO suggests that the higher specific surface area of mesoporous structure is a dominant factor for the PEC performance rather than insufficient crystallinity. DDA-WO3/FTO calcined at 500 ℃ still exhibites excellent PEC performance than H2WO4-WO3/FTO due to higher crystallinity, although the degradation of the mesostructure at higher temperature.
参考文献

[1] Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 1-13.

[2] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38: 253-278.

[3] Huang J, Yue P F, Wang L, et al. A review on tungsten-trioxide-based photoanodes forwater oxidation[J]. Chinese Journal of Catalysis, 2019, 40: 1408-1420.

[4] Wang Y, Li F, Zhou X, et al. Highly efficient photoelectrochemical water splitting with an immobilized molecular Co4O4 cubane catalyst[J]. Angewandte Chemie International Edition, 2017, 56(24): 6911-6915.

[5] Grtzel M. Photoelectrochemical cells[J]. Nature, 2001, 414: 338-344.

[6] Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for Photoelectrochemical cells (PEC)[J]. Nature, 1976, 260: 312-313.

[7] Chandra D, Saito K, Yagi M. Tunable mesoporous structure of crystalline WO3 photoanode toward efficient visible-light-driven water oxidation[J]. Sustainable Energy Fuels, 2018, 6: 16838-16846.

[8] 肖永昊.三氧化钨基纳米结构光阳极的制备及其光电化学性能研究[D].广州:华南理工大学,2018.

[9] Li D, Takeuchi R, Chandra D, et al. Visible light-driven water oxidation on an in situ N2-Intercalated WO3 nanorod photoanode synthesized by a dual-functional structure-directing agent[J]. ChemsusChem, 2018, 11(7): 1151-1156.

[10] Sohani T, Tayyebi A, Hong H, et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance[J]. Solar Energy Materials and Solar Cells, 2019, 191:39-49.

[11] 王振兴. 三氧化钨复合薄膜的制备及其光电性能研究[D].长春:吉林大学, 2019.

[12] Gu Y J, Zheng W Q, Bu Y Y. Facile preparation of nanoflower structured WO3 thin film on etched titanium substrate with high photoelectrochemical performance[J]. Journal of Electroanalytical Chemistry, 2019, 833(15): 54-62.

[13] 王 杰. 三氧化钨光阳极制备优化及光电化学性质研究[D]. 南京:南京邮电大学, 2018.

[14] Cen J J, Wu Q Y, Yan D H, et al. New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region[J]. RSC Advances, 2019, 5(2): 899-905.

[15] Chandra D, Saito K, Yagi M. Crystallization of tungsten trioxide having small mesopores:highly efficient photoanode for visible-light-driven water oxidation[J]. Angewandte Chemie International Edition, 2013, 52(48): 12606-12609.

[16] 于 婷.介孔氧化钨材料的制备与表征研究[D].大庆:东北石油大学,2012.

[17] 姜 霞,李 雯,郭云龙,等. 生物模板法制备金属氧化物及其催化应用研究进展[J].化工进展,2019,38(1):485-494.

[18] Wei H G, Yan X R, Wu S J, et al. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films:electrochromic behavior and electrochemical energy Storage[J]. The Journal of Physical Chemistry C, 2012, 116: 25052-25064.

[19] Gao J, Luo B D, Lin H L, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties[J]. Applied Catalysis B:Environmental, 2012, 111-112: 288-296

[20] Kanan S M, Tripp C P. Synthesis, FTIR studies and sensor properties of WO3 powders[J]. Current Opinion in Solid State and Materials Science, 2007, 11: 19-27.

[21] Krasovec U O, Vuk A S, Orel B. IR Spectroscopic studies of charged-discharged crystalline WO3 films[J]. Electrochimica Acta, 2001, 46: 1921-1929.

[22] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61: 14095-14107.

[23] Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films:synthesis, characterization, and applications [J]. Journal of the American Chemical Society, 2001, 123(43): 10639-10649.

[24] Kim J Y, Moon J K, Lee T W, et al. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: Application to unassisted solar water splitting inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses[J]. Chemical Communications, 2012, 48: 11939-11941.

[25] 余 勇.氧化钨介孔材料的制备与表征[D].长沙:中南大学,2009.

[26] Santato C, Ulmann M, Augustynski J.Photoelectrochemical properties of nanostructured tungsten trioxide films[J]. Journal of Physical Chemistry B, 2001, 105(5): 936-940.

李东, 高彩云. 功能模板导向合成介孔三氧化钨及其光电化学性能[J]. 人工晶体学报, 2020, 49(12): 2350. LI Dong, GAO Caiyun. Synthesis by Functional-Template Induced Methodology and Photoelectrochemical Performance of Mesoporous Tungsten Trioxide[J]. Journal of Synthetic Crystals, 2020, 49(12): 2350.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!