人工晶体学报, 2021, 50 (2): 260, 网络出版: 2021-03-30  

弛豫铁电0.24PIN-0.47PMN-0.29PT单晶声表面波性能研究

Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals
作者单位
1 大庆师范学院机电工程学院,大庆 163712
2 哈尔滨工业大学物理系,哈尔滨 150080
摘要
随着信息技术的迅速发展,对声表面波器件的要求也进一步提高。为寻找性能更加优异的声表面波器件基底材料,本文利用分波解法对室温下[001]c及[011]c极化弛豫铁电0.24PIN-0.47PMN-0.29PT单晶的声表面波性能进行研究。利用[001]c及[011]c极化弛豫铁电0.24PIN-0.47PMN-0.29PT单晶的弹性、压电及介电性能参数,通过求解克里斯托弗方程计算了晶体声表面波相速度、机电耦合系数及能流角随传播角度的变换关系。结果表明,沿[011]c方向极化的0.24PIN-0.47PMN-0.29PT单晶声表面波性能要优于沿[001]c极化的单晶。[011]c极化0.24PIN-0.47PMN-0.29PT单晶的声表面波机电耦合系数显著高于沿[001]c极化单晶。同时沿[011]c极化0.24PIN-0.47PMN-0.29PT单晶的声表面波能流角的最大值也明显小于[001]c极化单晶。因此,沿[011]c方向极化的0.24PIN-0.47PMN-0.29PT单晶兼具优异的声表面波性能及温度稳定性,更适合于实际应用。
Abstract
With the rapid development of the information technology, the requirements for surface acoustic wave devices are also increased. In order to find substrate materials with excellent surface acoustic wave performances, a detail theoretical analysis was conducted on the surface acoustic wave properties in 0.24PIN-0.47PMN-0.29PT single crystals along [001]c and [011]c at room temperature using the partial wave method. The relaxor ferroelectric single crystals xPb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-(1-x-y)PbTiO3 with compositions near the morphotropic phase boundary have comparably large piezoelectric and electromechanical properties and much higher Curie temperature. From the complete sets of elastic, piezoelectric and dielectric properties of [001]c and [011]c poled 0.24PIN-0.47PMN-0.29PT single crystals, the orientational dependence of surface acoustic wave phase velocities, electromechanical coupling coefficients and power flow angles was calculated by the Christoffel equation with semi-infinite boundary conditions. The results indicate that 0.24PIN-0.47PMN-0.29PT single crystals along [011]c has better surface acoustic wave properties than the 0.24PIN-0.47PMN-0.29PT single crystals along [001]c. It is very apparent that the surface acoustic wave electromechanical coupling coefficient for 0.24PIN-0.47PMN-0.29PT single crystal along [011]c is dramatically higher compared to along [001]c single crystal. Also, maximum power flow angle for 0.24PIN-0.47PMN-0.29PT single crystals along [011]c is apparently bigger than 0.24PIN-0.47PMN-0.29PT single crystals along [001]c. Therefore, the 0.24PIN-0.47PMN-0.29PT single crystal along [011]c with excellent surface acoustic wave properties and temperature stability is very suitable in making surface acoustic wave devices.
参考文献

[1] GORLA C R, EMANETOGLU N W, LIANG S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-2) sapphire by metalorganic chemical vapor deposition[J]. Journal of Applied Physics, 1999, 85(5): 2595-2602.

[2] ARSAT R, BREEDON M, SHAFIEI M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications[J]. Chemical Physics Letters, 2009, 467(4/5/6): 344-347.

[3] DING X Y, LI P, LIN S C S, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18): 3626-3649.

[4] MUNK D, KATZMAN M, HEN M, et al. Surface acoustic wave photonic devices in silicon on insulator[J]. Nature Communications, 2019, 10(1): 4214.

[5] 盛正茂,覃亚丽,谢长明.改进型梯形谐振滤波器的带通滤波器设计[J].电声技术,2011,35(7):31-32+37.

[6] SYAMSU I, GRANZ T, SCHOLZ G, et al. Design and fabrication of AlN-on-Si chirped surface acoustic wave resonators for label-free cell detection[J]. Journal of Physics: Conference Series, 2019, 1319: 012011.

[7] YANG J, RáCZ Z, GARDNER J W, et al. Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors[J]. Sensors and Actuators B: Chemical, 2012, 173: 547-554.

[8] OGURA H, TAKAYANAGI S, ABE K, et al. Design of zinc oxide-based surface acoustic wave sensors using a graphene electrode[J]. Japanese Journal of Applied Physics, 2019, 58(SA): SAAE03.

[9] LI G, TIAN F H, GAO X Y, et al. Investigation of high-power properties of PIN-PMN-PT relaxor-based ferroelectric single crystals and PZT-4 piezoelectric ceramics[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(8): 1641-1646.

[10] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210.

[11] BOKOV A A, YE Z G. Dielectric relaxation in relaxor ferroelectrics[J]. Journal of Advanced Dielectrics, 2012, 2(2): 1241010.

[12] ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Journal of Applied Physics, 2012, 111(3): 031301.

[13] SUN E W, ZHANG S J, LUO J, et al. Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]C[J]. Applied Physics Letters, 2010, 97(3): 032902.

[14] HOSONO Y, YAMASHITA Y, SAKAMOTO H, et al. Growth of single crystals of high-curie-temperature Pb(In1/2Nb1/2)o3-Pb(Mg1/3Nb2/3)O3-PbTiO3Ternary systems near morphotropic phase boundary[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9A): 5681-5686.

[15] SUN P, ZHOU Q, ZHU B, et al. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(12): 2760-2763.

[16] LI X, MA T, TIAN J, et al. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(7): 1171-1178.

[17] KIM K, ZHANG S, ZHANG S, et al. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(11): 2548-2554.

[18] SUN E, ZHANG R, WU F, et al. Influence of manganese doping to the full tensor properties of 0.24Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. J Appl Phys, 2013, 113(7): 74108.

[19] CHOI K H, OH J H, KIM H J, et al. Surface acoustic wave propagation properties of the relaxor ferroelectric PMN-PT single crystal[C]//2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263). October 7-10, 2001, Atlanta, GA, USA. IEEE, 2001: 161-163.

[20] 张振东.PMNT单晶声表面波和兰姆波传播特性及其激光超声测量[D].哈尔滨:哈尔滨工业大学,2016:33-34.

[21] KARAKI T, NAKAMOTO M, SUMIYOSHI Y, et al. Top-seeded solution growth of Pb[(In1/2Nb1/2), (Mg1/3Nb2/3), Ti]O3Single crystals[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9B): 6059-6061.

[22] SUN E W, ZHANG R, WU F M, et al. Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. Journal of Alloys and Compounds, 2013, 553: 267-269.

[23] LI X M, ZHANG R, HUANG N X, et al. Surface acoustic wave propagation in relaxor-based ferroelectric single crystals 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 poled along [011]c[J]. Chinese Physics Letters, 2012, 29(2): 024302.

李秀明, 吴广涛, 张锐. 弛豫铁电0.24PIN-0.47PMN-0.29PT单晶声表面波性能研究[J]. 人工晶体学报, 2021, 50(2): 260. LI Xiuming, WU Guangtao, ZHANG Rui. Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2021, 50(2): 260.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!