Chinese Optics Letters, 2007, 5 (s1): 105, Published Online: Jul. 15, 2007  

Performance of mid-infrared difference frequency spectrometer employing a periodically poled LiNbO3 for next generation environmental monitoring

Author Affiliations
Department of Physics, School of Science, Tokai University, 1117 Kitakaname, Hiratsuka 259-1292, Japan
Abstract
Development of a fiber laser pumped, compact mid-infrared (IR) difference frequency spectrometer employing a periodically poled LiNbO3 (PPLN) for next generation environmental monitoring is presented. Previous spectroscopic experiments of various gas species, performance characteristics of pump and signal lasers and PPLN-based difference frequency generation (DFG) are reviewed. The DFG spectrometers developed in our facility were carefully calibrated with concentrations between a few ppm and 500 ppm, and demonstrated with an excellent linearity. Moreover, a ratio between measurement deviation and gas concentration was approximately +-1%, which could maintain in a long-term measurement operation (~1000 h). Rapid gas detection for N2O, CH4, CO2, NO2, and NH3 with a total measurement time of less than 10 s was achieved with interference completely free from absorption spectra of other gas species, resulting in minimum detectable concentration at sub ppm level. Also, real-time NO2 monitoring of an exhaust gas of a diesel engine is demonstrated, and a simultaneous dual gas detection concept by the DFG is introduced.
References

[1] M. W. Sigrist, in Encyclopedia of Environmental Analysis and Remediation R. A. Meyers, (ed.) (John Wiley and Sons, New Jersey, 1998) p.84.

[2] H. Sasada, S. Takeuchi, M. Iritani, and K. Nakatani, J. Opt. Soc. Am. B 8, 713 (1991).

[3] K. Uehara and H. Tai, Appl. Opt. 31, 809 (1992).

[4] M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, Appl. Opt. 40, 821 (2001).

[5] M. E. Webber, D. S. Baer, and R. K. Hanson, Appl. Opt. 40, 2031 (2001).

[6] J. Reid, J. Shewchun, B. K. Garside, and E. A. Ballik, Appl. Opt. 17, 300 (1978).

[7] A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 39, 6866 (2000).

[8] L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).

[9] A. Balakrishman, S. Sanders, D. DeMars, J. Webjorn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, and D. F. Welch, Opt. Lett. 21, 952 (1996).

[10] D. Richter, D. G. Lancaster, and F. K. Tittel, Appl. Opt. 39, 4444 (2000).

[11] D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).

[12] Y. Mine, N. Melander, D. Richer, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 6, 5771 (1997).

[13] D. Richter and P. Weibring, Appl. Phys. B 82, 479 (2006).

[14] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

[15] H. Ashizawa, S. Yamaguchi, M. Endo, S. Ohara, M. Takahashi, K. Nanri, and T. Fujioka, Rev. Laser Eng. 31, 151 (2003).

[16] Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).

[17] T. Yanagawa, O. Tadanaga, K. Magari, Y. Nishida, H. Miyazawa, M. Asobe, and H. Suzuki, Appl. Phys. Lett. 89, 221115 (2006).

[18] O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, Electron. Lett. 42, 988 (2006).

Shigeru Yamaguchi, Koichi Wake, Jun-ichi Sato. Performance of mid-infrared difference frequency spectrometer employing a periodically poled LiNbO3 for next generation environmental monitoring[J]. Chinese Optics Letters, 2007, 5(s1): 105.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!