大气与环境光学学报, 2019, 14 (5): 321, 网络出版: 2019-10-14  

气溶胶单粒子的偏振散射特性研究

Investigation of Polarization Scattering Characteristics of Single Particle Aerosols
作者单位
1 中国科学院安徽光学精密机械研究所环境光谱实验室 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
建立了气溶胶单粒子的偏振散射实验装置,采用T-matrix方法模拟球形粒子和长形粒子的光散射计算, 讨论了偏振强度因子(Pf)和穆勒矩阵元素(Z11、Z12)随粒径、形状的变化关系,结果表明,球形 粒子和杆状粒子的Pf和Z12随着粒径的增大存在明显差异。通过对单分散的气溶胶颗粒 物样品的实验测量,得到不同样品的Pf值和Z12。实验结果表明,以油酸粒子的Z12为基准, 差值ΔZ12=12可以作为球形的油酸粒子和长形的核黄素以及石棉纤维的区分阈值, ΔZ12 介于12~41主要为核黄素粒子, ΔZ12达到59时粒子可被认为是长形的石棉纤维粒子, 而立方形的NaCl气溶胶粒子的ΔZ12与油酸粒子非常接近,难以区分。初步实验表明,穆勒矩阵 元素Z12可以用于识别长形粒子,该研究为颗粒物形态的偏振测量提供依据。
Abstract
An experimental device for the polarization scattering of aerosol single particles is developed. The T-matrix method is used to simulate the light scattering calculation of spherical particles and long particles. The relationship between polarization intensity factor (Pf), Müller matrix elements (Z11 and Z12) with particle size and shape is discussed. The results show that, with the increase of particle size, there are significant differences between spherical particles and rod-shaped particles in parameters Pf and Z12. By experimental measurement, Pf values and Z12 of different samples are obtained. The experimental results show that, using the Z12 of oleic particles as the reference, the difference ΔZ12=12 can be used as the distinguishing threshold for spherical oleic acid particles and ellipsoidal riboflavin particles and long asbestos fibers particles. The ΔZ12 of riboflavin particles ranges from 12 to 41, and when ΔZ12 reaches 59, the particles can be considered as asbestos fiber particles. However, it’s hard to distinguish cubic NaCl particles and oleic acid particles because the values Z12 of each are very similar. Preliminary experiments show that Müller matrix element Z12 can be used to identify long particles, which can help to design morphology measurement instrument with polarization method.
参考文献

[1] Kokhanovsky A A. Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere[M]. Chichester: Praxis Publishing Ltd., 2008.

[2] Signorell R, Reid J P. Fundamentals and Applications in Aerosol Spectroscopy[M]. Boca Raton: CRC Press, 2011.

[3] Kaye P H. Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles[J]. Measurement Science and Technology, 1998, 9(2): 141-149.

[4] Kaye P H, Alexander-Buckley K, Hirst E, et al. A real-time monitoring system for airborne particle shape and size analysis[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D14): 19215-19221.

[5] Pan Y L, Berg M J, Zhang S S M, et al. Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification[J]. Cytometry Part A, 2011, 79A(4): 284-292.

[6] ShimizuA,Sugimoto N, Matsui I, et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): D19S17.

[7] Lee C G, Yuan C S, Chang J C, et al. Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan[J]. Journal of the Air & Waste Management Association, 2005, 55(7): 1031-1041.

[8] Carrieri A H, Copper J, Owens D J,et al. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection[J]. Applied Optics, 2010, 49(3): 382-393.

[9] Richardson J M, Aldridge J C, Milstein A B. Polarimetric lidar signatures for remote detection of biological warfare agents[C]. Proceedings of SPIE, 2008, 6972: 69720E.

[10] Zubko E, Shkuratov Y, Hart M, et al. Backscattering and negative polarization of agglomerate particles[J]. Optics Letters, 2003, 28(17): 1504-1506.

[11] Redding B, Pan Y, Wang C, et al. Polarization resolved angular optical scattering of aerosol particles[C]. Proceedings of SPIE, 2014, 9106: 91060F.

[12] 吴良海,高 隽,范之国,等. 大气粒子散射特性及其对空间偏振分布的影响[J]. 光学学报, 2011, 31(7): 34-40.

    Wu L H, Gao J, Fan Z G,et al. Scattering of particles in the atmosphere and their influence on celestial polarization patterns[J]. Acta Optica Sinica, 2011, 31(7): 34-40(in Chinese).

[13] 李寒霜, 李 博, 王淑荣. 空间紫外遥感光谱仪器偏振特性研究[J]. 光学学报, 2018, 38(1): 0112006.

    Li Hanshuang, Li Bo, Wang Shurong. Polarization performance in space ultraviolet remote sensing spectral instruments[J]. Acta Optica Sinica, 2018, 38(1): 0112006(in Chinese).

[14] 徐赤冬, 纪玉峰. 偏振微脉冲激光雷达测量颗粒物污染变化的个例研究[J]. 大气与环境光学学报, 2011, 6(1): 27-32.

    Xu Chidong, Ji Yufeng. A case study of particulate pollution case measured by Polarization Micro-Pulse Lidar[J]. Journal of Atmophereric and Environmental Optics, 2011, 6(1): 27-32(in Chinese).

[15] 云龙龙, 张天舒, 等. 无锡市一次霾形成过程大气污染物特征分析[J]. 大气与环境光学学报, 2015, 10(1): 22-30.

    Yun Longlong, Zhang Tianshu, et al. Analysis of air pollutants during process of a haze in Wuxi City[J]. Journal of Atmophereric and Environmental Optics, 2015, 10(1): 22-30(in Chinese).

[16] 邵士勇, 黄印博, 饶瑞中. 基于成像法的气溶胶粒形和散射分析仪[J]. 光子学报, 2009, 38(3): 704-708.

    Shao Shiyong, Huang Yinbo, Rao Ruizhong. Aerosol particle shape and scattering analyzer based on imaging[J]. Acta Photonica Sinica, 2009, 38(3): 704-708(in Chinese).

[17] 吴金雷, 张金碧, 张 莉, 等. 大气颗粒物近前向光散射特性研究[J]. 光学学报, 2016, 36(5): 0529001.

    WuJinlei, Zhang Jinbi, Zhang Li, et al. Near forward light scattering characteristics of airborne particles[J]. ActA Optica Ssinica, 2016, 36(5): 0529001(in Chinese).

[18] Zhang J B, Ding L, Wang Y P, et al. Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing[J]. Chinese Physics B, 2016, 25(3): 034201.

[19] Zhang J B, Ding L, Wang Y P,et al. Shape classification of single aerosol particle using near-forward optical scattering patterns calculation[J]. Acta Physica Sinica, 2015, 64(5): 054202.

[20] Ding L, Zhang J B, Zheng H Y, et al. A method of simultaneously measuring particle shape parameter and aerodynamic size[J]. Atmospheric Environment, 2016, 139: 87-97.

[21] DeCarlo P F,Slowik J G, Worsnop D R, et al. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory[J]. Aerosol Science and Technology, 2004, 38(12): 1185-1205.

[22] Mishchenko M I. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation[J]. Applied Optics, 2000, 39(6): 1026-1031.

[23] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles[M]. Cambridge: Cambridge University Press, 2002.

[24] Bohren C, Huffman D. Absorption and Scattering of Light by Small Particles[M]. New York: Wiley, 1983.

[25] Mishchenko M I, Travis L D. T-matrix codes for computing electromagnetic scattering by nonspherical and aggregated particles[OL]. https://www.giss.nasa.gov/staff/mmishchenko/t-matrix.html.

[26] Heyder J,Gebhart J. Optimization of response functions of light scattering instruments for size evaluation of aerosol particles[J]. Applied Optics, 1979, 18(5): 705-711.

陈旭, 丁蕾, 王颖萍, 郑海洋, 方黎. 气溶胶单粒子的偏振散射特性研究[J]. 大气与环境光学学报, 2019, 14(5): 321. CHEN Xu, DING Lei, WANG Yingping, ZHENG Haiyang, FANG Ll. Investigation of Polarization Scattering Characteristics of Single Particle Aerosols[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 321.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!