大气与环境光学学报, 2020, 15 (1): 13, 网络出版: 2020-03-10  

LIBS水下原位探测技术研究进展

Research Progress of Laser Induced Breakdown Spectroscopy inUnderwater in situ Detection
作者单位
中国海洋大学信息科学与工程学院, 山东 青岛 266100
摘要
作为一种分析技术, 激光诱导击穿光谱(Laser induced breakdown spectroscopy, LIBS)近年来在各个领域有着快速的发展, 在水下的应用也逐渐受到关注。对LIBS水下研究从实验室模拟到现场试验、从机理研究到技术发展都进行了回顾, 并以 中国海洋大学研制的深海LIBS原位探测系统LIBSea为例, 给出了LIBS系统在海洋探测中获得的典型结果, 最后对未 来5~10年LIBS水下研究方向进行了展望。
Abstract
Laser induced breakdown spectroscopy(LIBS) has been widely used in different fields as an effective analysis technique. Its application in underwater research is a new hot spot recently and a lot of works have been reported continuously. An overview of the recent research progress for LIBS in underwater detection is given in this work, including the simulation experiments in laboratory, the field experiments in sea trial, the fundamental research, and the technique development. As an example, the deep sea in situ LIBS system (LIBSea) is shown in detail, giving the typical results in ocean detection. Finally, the application of LIBS in ocean detection in the near future is prospected.
参考文献

[1] De Giacomo A, Dell’Aglio M, De Pascale O. Single pulse-laser induced breakdown spectroscopy in aqueous solution[J]. Applied Physics A, 2004, 79(4-6): 1035-1038.

[2] Tian Y, Xue B, Song J, et al. Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers[J]. Applied Physics Express, 2017, 10(7): 072401.

[3] 李颖, 王振南, 吴江来, 等. 激光波长对水中金属元素激光诱导击穿光谱探测的影响[J]. 光谱学与光谱分析, 2012, 32(3): 582-585.

    Li Ying, Wang Zhennan, Wu Jianglai, et al. Effects of laser wavelength on detection of metal elements in water solution by laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(3):582-585 (in Chinese).

[4] 宋矫健, 田 野, 卢 渊, 等. 532和1064 nm激光的水下LIBS探测对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3104-3108.

    SongJiaojian, Tian Ye, Lu Yuan, et al. Comparative investigation of underwater-LIBS using 532 nm and 1064 nm lasers[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3104-3108 (in Chinese).

[5] Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media[J]. Progress in Quantum Electronics, 1997, 21(3): 155-248.

[6] 薛博洋, 田 野, 宋矫健, 等. 不同能量水下激光诱导等离子体的轴向辐射分布特性研究[J]. 光谱学与光谱分析, 2016, 3(4): 1186-1190.

    XueBoyang, Tian Ye, Song Jiaojian, et al. Study on the spatial distribution of laser plasma emission underwater with different laser energies[J]. Spectroscopy and Spectral Analysis, 2016, 3(4): 1186-1190 (in Chinese).

[7] Thornton B, Ura T. Effects of pressure on the optical emissions observed from solids immersed in water using a single pulse laser[J]. Applied Physics Express, 2011, 4(2): 2702.

[8] Tian Y, Xue B, Song J, et al. Stabilization of laser-induced plasma in bulk water using large focusing angle[J]. Applied Physics Letters, 2016, 109(6): 515-7.

[9] Tian Y, Xue B, Song J, et al. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection[J]. Applied Physics Letters, 2015, 107(11): 297-103.

[10] Giacomo A D, Dell’Aglio M, Colao F, et al. Double-pulse LIBS in bulk water and on submerged bronze samples[J]. Applied Surface Science, 2005, 247(1): 157-162.

[11] Casavola A, De Giacomo A, Dell’Aglio M, et al. Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7): 975-985.

[12] De Giacomo A, Dell’Aglio M, De Pascale O, et al. From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(8): 721-738.

[13] De Giacomo A, Dell’Aglio M, Bruno D, et al. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(7): 805-816.

[14] De Giacomo A, DeBonis A, Dell’Aglio M, et al. Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures[J]. The Journal of Physical Chemistry C, 2011, 115(12): 5123-5130.

[15] De Giacomo A, Dell’Aglio M, Santagata A, et al. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production[J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3083-3092.

[16] Lazic V, Laserna J J, Jovicevic S. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation—Part I: Vapor bubble, shockwaves and plasma[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 42-49.

[17] Lazic V, Laserna J J, Jovicevic S. Insights in the laser induced breakdown spectroscopy signal generation underwater using dual pulse excitation-Part II: Plasma emission intensity as a function of interpulse delay[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 50-59.

[18] Xue B, Li N, Lu Y, et al. Emission enhancement of underwater collinear dual-pulse laser-induced breakdown spectroscopy with the second pulse defocused[J]. Applied Physics Letters, 2017, 110(10): 101102.

[19] Tamura A, Sakka T, Fukami K, et al. Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water[J]. Applied Physics A, 2013, 112(1): 209-213.

[20] Guirado S, Fortes F J, Lasema J J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system[J]. Talanta, 2015, 137: 182-8.

[21] Sakka T, Oguchi H, Masai S, et al. Use of a long-duration ns pulse for efficient emission of spectral lines from the laser ablation plume in water[J]. Applied physics letters, 2006, 88(6): 061120.

[22] Sakka T, Oguchi H, Masai S, et al. Quasi nondestructive elemental analysis of solid surface in liquid by long-pulse laser ablation plume spectroscopy[J]. Chemistry Letters, 2007, 3(4): 508-509.

[23] Sakka T, Masai S, Fukami K, et al. Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(10): 981-985.

[24] Sakka T, Tamura A, Matsumoto A, et al. Effects of pulse width on nascent laser-induced bubbles for underwater laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 94-98.

[25] Tamura A, Matsumoto A, Nakajima T, et al. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations[J]. Journal of Applied Physics, 2015, 117(2): 640.

[26] Michel A P M. Laboratory evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean[J]. Massachusetts Institute of Technology, 2007: 1-5.

[27] Lawrence-Snyder M, Scaffidi J, Angel S M, et al. Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions[J]. Applied Spectroscopy, 2006, 60(7): 786-790.

[28] Michel A P M, Lawrence-Snyder M, Angel S M, et al. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters[J]. Applied Optics, 2007, 4(13): 2507-2515.

[29] Lawrence-Snyder M, Scaffidi J, Angel S M, et al. Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions[J]. Applied Spectroscopy, 2007, 61(2): 171-176.

[30] Michel A P M, Chave A D. Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure[J]. Applied Optics, 2008, 47(31): G131-G143.

[31] Lawrence-Snyder M, Scaffidi J P, Pearman W F, et al. Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 99: 172-178.

[32] Thornton B, Ura T. Effects of pressure on the optical emissions observed from solids immersed in water using a single pulse laser[J]. Applied Physics Express, 2011, 4(2): 022702.

[33] Thornton B, Takahashi T, Ura T, et al. Cavity formation and material ablation for single-pulse laser-ablated solids immersed in water at high pressure[J]. Applied Physics Express, 2012, 5(10): 102402.

[34] Thornton B, Sakka T, Takahashi T, et al. Spectroscopic measurements of solids immersed in water at high pressure using a long-duration nanosecond laser pulse[J]. Applied Physics Express, 2013, (8): 082401.

[35] Takahashi T, Thonton B, Ura T. Investigation of double-pulse laser-induced breakdown spectroscopy for analysis of the composition of solids submerged at high pressures[C]. Oceans. IEEE, 2012: 1-5.

[36] Hou H, Tian Y, Li Y, et al. Study of pressure effects on laser induced plasma in bulk seawater[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(1): 169-175.

[37] Hou H, Li Y, Tian Y, et al. Plasma condensation effect induced by ambient pressure in laser induced breakdown spectroscopy[J]. Applied Physics Express, 2014, 7: 032402.

[38] Li N, Guo J, Zhu L, et al. Effects of ambient temperature on laser-induced plasma in bulk water[J]. Applied Spectroscopy, 2019, 73(11): 1277-1283.

[39] Li N, Guo J, Zhang C, et al. Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy[J]. Applied Optics, 2019, 58(14): 3886-3891.

[40] Guirado S, Fortes F J, Lazic V, et al. Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 74: 137-143.

[41] Guirado S, Fortes F J, Laserna J J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system[J]. Talanta, 2015, 137: 182-188.

[42] Thornton B, Sakka T, Takahashi T, et al. Laser-induced breakdown spectroscopy for in situ chemical analysis at sea[C]. Underwater Technology Symposium (UT), 2013 IEEE International. IEEE, 2013: 1-7.

[43] Thornton B, Takahashi T, Sato T, et al. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 20-36.

[44] Guo J, Lu Y, Cheng K, et al. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials[J]. Applied Optics, 2017, 5(29): 8196-8200.

[45] Morel A. Optical Aspects of Oceanography[M]. London: Academic Press, 1974, 1-24.

[46] Russo R E, Bol’shakov A A, Mao Xianglei, et al. Laser ablation molecular isotopic spectrometry[J]. Spectrochimica Acta Part B, 2011, 66: 99-104.

郭金家, 卢渊, 李楠, 刘春昊, 田野, 薛博洋, 张超, 郑荣儿. LIBS水下原位探测技术研究进展[J]. 大气与环境光学学报, 2020, 15(1): 13. GUO Jinjia, LU Yuan, LI Nan, LIU Chunhao, TIAN Ye, XUE Boyang, ZHANG Chao, ZHENGRonger. Research Progress of Laser Induced Breakdown Spectroscopy inUnderwater in situ Detection[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 13.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!