光电工程, 2019, 46 (10): 180575, 网络出版: 2019-11-19   

点测量激光吸收光谱技术理论分析

Theoretical research of point-measurement laser absorption spectroscopy
作者单位
中国空气动力研究与发展中心超高速空气动力研究所,四川 绵阳 621000
摘要
点测量吸收光谱技术以饱和吸收为基本原理,可有效克服可调谐二极管激光吸收光谱技术(TDLAS)的线测量缺陷,通过探测光束与一同频的饱和光束交叉来提取交叉位置点处的信息,实现具有毫米级空间分辨能力的点测量。本文对点测量吸收光谱技术进行了详细的理论分析,推导了饱和光束和探测光束在任意交叉角度下的饱和吸收系数,分析了饱和参数对吸收信号的影响。同时提出了一种针对微弱吸收信号的调制方法,推导了饱和光束在高频正弦调制下的探测光一次谐波表达式,并通过数值计算得到了验证。研究还表明,不同阶次谐波信号具有相同的半高宽,并且与无调制时的吸收信号半高宽一致,因此利用多次谐波叠加可进一步提高谱线宽度测量的信噪比。
Abstract
The point measurement laser absorption spectroscopy (PMLAS) based on saturated absorption theorycould surpass the defect of ‘line-of-sight’ measurement in traditional tunable diode laser absorption spectroscopy(TDLAS) and achieve the ‘point’ measurement with millimeter spatial resolution. It is realized by crossing with twofrequency synchronized laser beams: one named probe beam as in traditional TDLAS and the other named saturatedbeam with higher power. In this paper, the theory of PMLAS was firstly analyzed by the theoretical deduction ofsaturated absorption coefficients with arbitrary cross angles and the numerical calculations of point absorbanceunder different saturation parameters. Next, a weak signal detection method based on high-frequency sinusoidalmodulation of the saturated beam intensity was proposed, in which the first-order harmonic signal was theoreticallydeduced and verified by numerical demonstration. Furthermore, it is found that the FWHMs (full width at half maximum)of different order harmonics are all the same and equal to the width of the absorption signal without modulation,which implied that the superposition of multi-harmonics could enhance the signal-to-noise ratio (SNR) in measuringthe spectrum line-width.
参考文献

[1] 王书涛, 王昌冰, 潘钊, 等. 光学技术在气体浓度检测中的应用[J]. 光电工程, 2017, 44(9): 862–871.

    Wang S T, Wang C B, Pan Z, et al. Applications of optical technology in gas concentration detection[J]. Opto-Electronic Engineering, 2017, 44(9): 862–871.

[2] 李龙, 杨燕罡, 陈文亮, 等. 基于HWG 气体池的TDLAS 氨气测量中影响条件的修正[J]. 光电工程, 2015, 45(12): 35–40.

    Li L, Yang Y G, Chen W L, et al. Correction of influence conditions in TDLAS ammonia measuring based on hollow waveguide cell[J]. Opto-Electronic Engineering, 2015, 45(12):35–40.

[3] 孙鹏帅, 张志荣, 夏滑, 等. 基于波长调制技术的温度实时测量方法研究[J]. 光学学报, 2015, 35(2): 0230001.

    Sun P S, Zhang Z R, Xia H, et al. Study on real-time temperature measurement based on wavelength modulation technology[J]. Acta Optica Sinica, 2015, 35(2): 0230001.

[4] 殷可为, 胥頔, 张龙, 等. TDLAS 技术用于燃烧场气体温度和浓度重建研究[J]. 光电工程, 2016, 43(12): 20–27.

    Yin K W, Xu D, Zhang L, et al. 2D reconstruction for gas temperature and concentration based on TDLAS[J]. Opto-Electronic Engineering, 2016, 43(12): 20–27.

[5] 贾良权, 刘文清, 阚瑞峰, 等. 采用TDLAS 的超音速气流中氧气质量流量检测法[J]. 光子学报, 2015, 44(7): 0730001.

    Jia L Q, Liu W Q, Kan R F, et al. Oxygen mass flow detection method in supersonic flow based on TDLAS[J]. Acta Photonica Sinica, 2015, 44(7): 0730001.

[6] 洪光烈, 章桦萍, 刘豪, 等. 国外差分吸收激光雷达探测大气CO2 研究综述[J]. 光电工程, 2018, 45(1): 170452.

    Hong G L, Zhang H P, Liu H, et al. Review of measurement for atmospheric CO2 differential absorption lidar[J]. Opto-Electronic Engineering, 2018, 45(1): 170452.

[7] 许超, 方朝晖, 董美丽, 等. 基于吸收光谱技术的皮肤胆固醇无创检测系统设计[J]. 光电工程, 2018, 45(4): 170587.

    Xu C, Fang Z H, Dong M L, et al. Design of non-invasive skin cholesterol detection system based on absorption spectroscopy[J]. Opto-Electronic Engineering, 2018, 45(4): 170587.

[8] Liu C, Xu L J, Cao Z, et al. One-dimensional tomography of axisymmetric temperature distribution with limited TDLAS data by using three-point Abel deconvolution[C]//Proceedings of 2014 IEEE International Conference on Imaging Systems and Techniques, 2014: 432–435.

[9] Xu L J, Liu C, Jing W Y, et al. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction[J]. Review of Scientific Instruments, 2016, 87(1):013101.

[10] 李金义, 杜振辉, 周涛, 等. 温度调谐多谱线方法测量燃烧场的非均匀温度分布[J]. 光学学报, 2013, 33(S2): s212009.

    Li J Y, Du Z H, Zhou T, et al. Non-uniform temperature distribution measurement of combustion field using temperature tuning multi-line thermometry[J]. Acta Optica Sinica, 2013, 33(S2): s212009.

[11] Nadir Z, Brown M S, Comer M L, et al. Gaussian mixture prior models for imaging of flow cross sections from sparse hyperspectral measurements[C]//Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, 2015:527–531.

[12] Barone D L. Investigation of TDLAS measurements in a scramjet engine[D]. Cincinnati: University of Cincinnati, 2010.

[13] Hannemann K. Hypersonic research in the high-enthalpy shock tunnel G ttingen[C]//Proceedings of the 30th International Symposium on Shock Waves 2, 2017: 1385–1390.

[14] 欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS 的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62–67.

    Ou D B, Chen L Z, Dong Y H, et al. Measurements of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62–67.

[15] Kianvashrad N, Knight D. Effect of vibrational temperature boundary condition of isothermal wall on hypersonic shock wave laminar boundary layer interaction of a hollow cylinder flare[C]//Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences, 2017.

[16] Matsudo T, Takahara Y, Hori H, et al. Pseudomomentum transfer from evanescent waves to atoms measured by saturated absorption spectroscopy[J]. Optics Communications,1998, 145(1–6): 64–68.

[17] 荆彦锋, 闫树斌, 秦丽, 等. 薄铷汽室饱和吸收光谱的研究[J].激光与红外, 2010, 40(7): 697–699.

    Jing Y F, Yan S B, Qin L, et al. Research of thin Rb vapor cell’s saturated absorption spectroscopy[J]. Laser & Infrared, 2010,40(7): 697–699.

[18] Kumar P, Saini V K, Purbia G S, et al. Hyperfine structure studies of neutral europium transitions at 601.815 and 580.027 nm by saturation absorption spectroscopy[J]. Applied Optics,2017, 56(6): 1579–1584.

[19] Zizak G, Cignoli F, Benecchi S. Spatially resolved saturated absorption measurements of OH in methane-air flames[J]. Applied Optics, 1987, 26(19): 4293–4297.

[20] Goldsmith J E M. Spatially resolved saturated absorption spectroscopy in flames[J]. Optics Letters, 1981, 6(11):525–527.

[21] Walters P E, Long G L, Winefordner J D. Spatially resolved concentration studies of ground state atoms and ions in an ICP:saturated absorption spectroscopic method[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1984, 39(1): 69–76.

[22] Kychakoff G, Howe R D, Hanson R K. Spatially resolved combustion measurements using cross-beam saturated absorption spectroscopy[J]. Applied Optics, 1984, 23(9): 1303–1305.

[23] Nomura S, Kaneko T, Komurasaki K. Development of highly sensitive and spatially resolved laser absorption spectroscopy for plasma wind tunnel measurement[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012.

[24] Nomura S, Ito G, Fujita K, et al. Translational temperature measurements in a shock layer by point-measurement laser absorption spectroscopy[C]//Proceedings of the 52nd Aerospace Sciences Meeting, 2015.

[25] 沃尔夫冈·戴姆特瑞德. 激光光谱学. 第2 卷, 实验技术[M]. 姬扬,译. 北京: 科学出版社, 2012: 121–124.

    Demtroder W. Laser Spectroscopy (Vol. 2): Experimental Techniques[M]. Ji Y, trans. Beijing: Science Press, 2012:121–124.

[26] 王健, 黄伟, 顾海涛, 等. 可调谐二极管激光吸收光谱法测量气体温度[J]. 光学学报, 2007, 27(9): 1639–1642.

    Wang J, Huang W, Gu H T, et al. Gas temperature measurement with tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2007, 27(9): 1639–1642.

[27] Kim S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. Stanford:Stanford University, 2004.

[28] Parks T, McClellan J. Chebyshev approximation for nonrecursive digital filters with linear phase[J]. IEEE Transactions on Circuit Theory, 1972, 19(2): 189–194.

陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛. 点测量激光吸收光谱技术理论分析[J]. 光电工程, 2019, 46(10): 180575. Chen Wei, Wu Yue, Luo Jie, Liu Jinbo, Wang Lei, Zhu Xinxin, Zhu Tao. Theoretical research of point-measurement laser absorption spectroscopy[J]. Opto-Electronic Engineering, 2019, 46(10): 180575.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!