光电工程, 2019, 46 (4): 180466, 网络出版: 2019-05-04   

PCNN与形态匹配增强相结合的 视网膜血管分割

Retinal vascular segmentation combined with PCNN and morphological matching enhancement
作者单位
1 三峡大学计算机与信息学院, 湖北宜昌 443002
2 湖北省水电工程智能视觉监测重点实验室(三峡大学), 湖北宜昌 443002
3 三峡大学第一临床医学院超声科, 湖北宜昌 443002
摘要
针对人工手动提取视网膜血管工作量大, 主观性强等问题, 本文提出了一种将区域生长思想、脉冲耦合神经网络(PCNN)、高斯滤波器组及 Gabor滤波器相结合的视网膜血管分割方法。首先将二维高斯滤波器组、二维 Gabor匹配滤波器相结合, 对视网膜血管区域进行形态匹配增强, 提升血管与背景的对比度。然后将带有快速连接机制的 PCNN与区域生长思想相结合, 每次从未处理的像素点中选取亮度最大的作为种子, 使用自适应的连接系数及停止条件, 实现眼底图像中血管的自动分割。整个算法在 DRIVE眼底数据库上的实验结果显示, 平均准确度、灵敏度、特异性分别达到 93.96%、78.64%、95.64%, 分割结果中血管断点少, 微小血管清晰, 具有较好的应用前景。
Abstract
Aiming at the problem of large workload and strong subjectivity for manual retinal vessels extraction, this paper proposes a retinal vessel segmentation method that combines regional growing strategy, pulse coupled neural network (PCNN), a Gaussian filter bank and a Gabor filter. First, 2D Gaussian filter bank and 2D Gabor filter are combined to enhance the shape retinal blood vessel region and strengthen the contrast between the blood vessel and the background. Then, PCNN with fast linking mechanism and region growing idea is implemented to achieve automatic retinal vessel segmentation in which the unprocessed pixel with highest intensity is set as the seed, and the adaptive linking weight and stop conditions are adopted. The experimental results on the DRIVE fundus database show that the average accuracy, sensitivity and specificity are 93.96%, 78.64%, 95.64%, respectively. The segmentation results have less vascular breakpoints and clear micro-vessels. This work has promising application value.
参考文献

[1] Marin D, Aquino A, Gegunde-Zarias M E, et al. A new super-vised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J]. IEEE Transactions on Medical Imaging, 2011, 30(1): 146–158.

[2] Zhao Y Q, Wang X H, Wang X F, et al. Retinal vessels seg-mentation based on level set and region growing[J]. Pattern Recognition, 2014, 47(7): 2437–2446.

[3] Gu X D, Guo S D, Yu D H. New approach for noise reducing of image based on PCNN[J]. Journal of Electronics & Information Technology, 2002, 24(10): 1304–1309. 顾晓东, 郭仕德, 余道衡. 一种基于 PCNN的图像去噪新方法 [J]. 电子与信息报, 2002, 24(10): 1304–1309.

[4] Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched fil-ters[J]. IEEE Transactions on Medical Imaging, 1989, 8(3): 263–269.

[5] Jiang X Y, Mojon D. Adaptive local thresholding by verifica-tion-based multithreshold probing with application to vessel detection in retinal images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1): 131–137.

[6] Gang L, Chutatape O, Krishnan S M. Detection and measure-ment of retinal vessels in fundus images using amplitude mod-ified second-order Gaussian filter[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(2): 168–172.

[7] Zhang B, Zhang L, Zhang L, et al. Retinal vessel extraction by matched filter with first-order derivative of Gaussian[J]. Com-puters in Biology and Medicine, 2010, 40(4): 438–445.

[8] Soares J V B, Leandro J J G, Cesar R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214–1222.

[9] Gwetu M V, Tapamo J R, Viriri S. Segmentation of retinal blood vessels using normalized Gabor filters and automatic thre-sholding[J]. South African Computer Journal, 2014, 55(1): 12–24.

[10] Zhang L, Fisher M, Wang W J. Retinal vessel segmentation using multi-scale textons derived from keypoints[J]. Compute-rized Medical Imaging and Graphics, 2015, 45: 47–56.

[11] Zou P, Chan P, Rockett P. A model-based consecutive scanline tracking method for extracting vascular networks from 2-D dig-ital subtraction angiograms[J]. IEEE Transactions on Medical Imaging, 2009, 28(2): 241–249.

[12] Vlachos M, Dermatas E. Multi-scale retinal vessel segmenta-tion using line tracking[J]. Computerized Medical Imaging and Graphics, 2010, 34(3): 213–227.

[13] Zana F, Klein J C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[J]. IEEE Transactions on Image Process, 2001, 10(7): 1010–1019.

[14] Espona L, Carreira M J, Penedo M G, et al. Retinal vessel tree segmentation using a deformable contour mod-el[C]//Proceedings of the 19th International Conference on Pattern Recognition, 2008: 1–4.

[15] Yu J B, Chen H J. Improvement of PCNN model and its appli-cation to medical image processing[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2316–2320.于江波, 陈后金. PCNN模型的改进及其在医学图像处理中的应用[J].电子与信息学报, 2007, 29(10): 2316–2320.

[16] Zhu S W, Hao C Y. An approach for fabric defect image seg-mentation based on the improved conventional PCNN model[J]. Acta Electronica Sinica, 2012, 40(3): 611–616.祝双武, 郝重阳. 一种基于改进型 PCNN的织物疵点图像自适应分割方法[J].电子学报, 2012, 40(3): 611–616.

[17] Yao C, Chen H J, Jing T, et al. Extraction of blood vessel tree in retinal image based on improved PCNN[J]. Journal of Optoe-lectronics·Laser, 2011, 22(11): 1745–1750. 姚畅, 陈后金, 荆涛, 等. 一种基于改进的 PCNN的视网膜血管树提取方法[J].光电子·激光, 2011, 22(11): 1745–1750.

[18] Jiang W, Zhou H Y, Shen Y, et al. Image segmentation with pulse-coupled neural network and Canny operators[J]. Com-puters & Electrical Engineering, 2015, 46: 528–538.

[19] Lu Y F, Miao J, Duan L J, et al. A new approach to image segmentation based on simplified region growing PCNN[J]. Applied Mathematics and Computation, 2008, 205(2): 807–814.

[20] Chen M M, Xiong X L, Zhang Y, et al. A new method for retinal fundus image enhancement[J]. Journal of Chongqing Medical University, 2014, 39(8): 1087–1090.陈萌梦, 熊兴良, 张琰, 等. 1种视网膜眼底图像增强的新方法[J]. 重庆医科大学学报, 2014, 39(8): 1087–1090.

[21] Oloumi F, Rangayyan R M, Oloumi F, et al. Digital image processing and pattern recognition techniques for the analysis of fundus images of the retina[R]. Alberta, Canada: Department of Electrical and Computer Engineering, University of Calgary, 2010: 8.

[22] Reza A M. Realization of the contrast limited adaptive histo-gram equalization (CLAHE) for real-time image enhance-ment[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35–44.

[23] Gwetu M V, Tapamo J R, Viriri S. Segmentation of retinal blood vessels using normalized Gabor filters and automatic thre-sholding[J]. South African Computer Journal, 2014, 53(55): 12–24.

[24] Yao C, Chen H J. Automated blood vessel network segmenta-tion in pathological retinal images[J]. Acta Electronica Sinica, 2010, 38(5): 1226–1233. 姚畅, 陈后金. 病变视网膜图像血管网络的自动分割 [J].电子学报, 2010, 38(5): 1226–1233.

[25] Lindblad T, Kinser J M. Image Processing Using Pulse-Coupled Neural Networks: Applications in Python[M]. Xu G X, Ma Y D, Lei B J, trans. 3rd ed. Beijing: National Defense Industry Press, 2017: 1.托马斯·林德布拉德 , 詹森·金赛 . 图像处理与脉冲耦合神经网络: 基于 Python的实现[M].徐光柱, 马义德, 雷帮军, 译. 3版. 北京: 国防工业大学出版社, 2017: 1.

[26] Bi Y W, Qiu T S. An adaptive image segmentation method based on a simplified PCNN[J]. Acta Electronica Sinica, 2005, 33(4): 647–650.毕英伟, 邱天爽. 一种基于简化 PCNN的自适应图像分割方法[J].电子学报, 2005, 33(4): 647–650.

[27] Xu G Z, Zhang L, Zou Y B, et al. Retinal blood segmentation with adaptive PCNN and matched filter[J]. Optics and Precision Engineering, 2017, 25(3): 756–764. 徐光柱, 张柳, 邹耀斌, 等. 自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割 [J].光学精密工程 , 2017, 25(3): 756–764.

[28] Stewart R D, Fermin I, Opper M. Region growing with pulse-coupled neural networks: an alternative to seeded region growing[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1557–1562.

[29] Ma Y D, Dai R L, Li L. Automated image segmentation using pulse coupled neural networks and image's entropy[J]. Journal of China Institute of Communications, 2002, 23(1): 46–51. 马义德 , 戴若兰, 李廉. 一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报, 2002, 23(1): 46–51.

[30] Yao C, Chen H J, Li J P. Segmentation of retinal blood vessels based on transition region extraction[J]. Acta Electronica Sinica, 2008, 36(5): 974–978. 姚畅, 陈后金 , 李居朋 . 基于过渡区提取的视网膜血管分割方法 [J].电子学报, 2008, 36(5): 974–978.

徐光柱, 王亚文, 胡松, 陈鹏, 周军, 雷帮军. PCNN与形态匹配增强相结合的 视网膜血管分割[J]. 光电工程, 2019, 46(4): 180466. Xu Guangzhu, Wang Yawen, Hu Song, Chen Peng, Zhou Jun, Lei Bangjun. Retinal vascular segmentation combined with PCNN and morphological matching enhancement[J]. Opto-Electronic Engineering, 2019, 46(4): 180466.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!