光电工程, 2019, 46 (7): 190081, 网络出版: 2019-07-25  

Golay 编码差分吸收相干激光雷达研究

Research on coherent differential absorption LiDAR based on Golay coding technology
胡以华 1,2董骁 1,2,*赵楠翔 1,2
作者单位
1 国防科技大学电子对抗学院,脉冲功率激光技术国家重点实验室,安徽合肥 230037
2 国防科技大学电子对抗学院,电子制约技术安徽省重点实验室,安徽合肥 230037
摘要
针对差分吸收相干激光雷达在 CO2浓度反演时对信号的高信噪比需求,研究了一种基于 Golay脉冲编码的差分吸收相干激光雷达及其解码方法,以改善系统信噪比,降低浓度反演误差。分析了采用脉冲编码技术对传统大气后向散射信号相干探测信噪比的编码增益,研究了编码增益随本振光功率、编码长度和 3 dB耦合器分束比的变化规律,本振光功率越高、分束比偏离 50%越多,则编码增益越低,且在实际系统中,存在最优的编码长度。当本振光逐渐增强时,热噪声对系统的影响逐渐降低,相干探测系统存在最优的本振光功率,该功率与回波无关仅与系统的噪声水平有关。脉冲编码后最优本振光功率相对于单脉冲探测时下降,但其探测信噪比仍优于单脉冲探测,当 3 dB耦合器分束比为 0.495时,最优本振光功率为 0.93 mW。脉冲编码后,系统对 CO2的有效探测距离增加,且在 104~1010范围内进行脉冲积累时,相较于原系统距离增长率大于 15%。
Abstract
The detection of CO2 based on coherent different absorption LiDAR (CDIAL) requires high signal-to-noise ratio (SNR). To improve the SNR and reduce the inversion error of CO2, a coherent differential absorption LiDAR based on Golay coding is proposed and the corresponding decoding method is also studied. The coding gain of SNR in traditional atmospheric backscattering signal detection is also analyzed when the pulse code technology is used. The variations of coding gain with the power of local oscillator (LO), the code length and the splitting ratio of 3 dB coupler are discussed. The higher the local oscillator power is and the more the beam splitting ratio deviates from 50%, the lower the coding gains. In addition, there are optimal code lengths in practical systems. The influence of thermal noise on the detection system decreases when the LO power grows, and there is optimal LO power which is only related to the system noise characteristics. The optimal LO power decreases with respect to single pulse de-tection after pulse coding, but the SNR is still higher than the traditional single pulse detection. When the splitting ratio of the 3 dB coupler is 0.495, the optimal LO power in coded system is 0.93 mW. The effective detection ranges of CO2 increase when the pulses are coded, and in the pulse accumulations of 104~1010, the improvement ratios of effective detection range are higher than 15%.
参考文献

[1] Ishii S, Koyama M, Baron P, et al. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1359–1369.

[2] Ishii S, Mizutani K, Fukuoka H, et al. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device[J]. Applied Optics, 2010, 49(10): 1809–1817.

[3] Gibert F, Edouart D, Cénac C, et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 2015, 40(13): 3093–3096.

[4] Wu S H, Liu B Y, Liu J T, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): A762–A780.

[5] Wang C, Xia H Y, Liu Y P, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time–frequency analysis[J]. Optics Communications, 2018, 424: 48–53.

[6] Belmonte A. Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters[J]. Op-tics Express, 2003, 11(17): 2041–2046.

[7] Hu Y H, Dong X,Zhao N X, et al. System efficiency of hetero-dyne lidar with truncated Gaussian Schell-Model beam in tur-bulent atmosphere[J]. Optics Communications, 2019, 436: 82–89.

[8] Muanenda Y S, Taki M, Nannipieri T, et al. Advanced coding techniques for long-range raman/BOTDA distributed strain and temperature measurements[J]. Journal of Lightwave Technol-ogy, 2016, 34(2): 342–350.

[9] Wang F, Zhu C H, Cao C Q, et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 2017, 25(4): 3504–3513.

[10] Nazarathy M, Newton S A, GIFFARD R P, et al. Real-time long range complementary correlation optical time domain reflec-tometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24–38.

[11] 周艳宗, 王冲, 魏天问, 等. 基于 Golay脉冲编码技术的相干激光雷达仿真研究[J].中国激光, 2018, 45(8): 810004.

    Zhou Y Z, Wang C, Wei T W, et al. Simulation research of coherent lidar based on golay coding technology[J]. Chinese Journal of Lasers, 2018, 45(8): 0810004.

[12] 杜晓林, 苏涛, 王旭, 等. 基于 Golay互补序列空时编码的 MIMO雷达波形设计[J].电子与信息学报, 2014, 36(8): 1966–1971.

    Du X L, Su T,Wang X, et al. Golay complementary sequence with space time coding for MIMO radar waveform design[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1966–1971.

[13] Pezeshki A, Calderbank R A, Moran W, et al. Doppler resilient golay complementary waveforms[J]. IEEE Transactions on In-formation Theory, 2008, 54(9): 4254–4266.

[14] Hu Y H, Dong X, Guo L R. Coherent detection of backscattered polarized laser with polarization diversity recep-tion[C]//Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai, 2016: 271–277.

[15] 李永倩, 王文平, 李晓娟, 等. APD检测 Golay编码 BOTDR系统的建模分析与优化设计 [J]. 红外与激光工程 , 2017, 46(11): 1122002.

    Li Y Q,WangWP, Li XJ, et al. Modeling analysis and optimi-zation design of a Golay coding Brillouin Optical Time Domain Reflectometer system with APD detector[J]. Infrared and Laser Engineering, 2017, 46(11): 1122002.

[16] 杨彦玲, 李彦超 , 高龙, 等. 相干激光雷达平衡外差探测方法的数值仿真[J].红外与激光工程, 2011, 40(10): 1918–1922.

    Yang Y L, Li YC, Gao L, et al. Numerical simulation of ba-lanced heterodyne detection for coherent lidar[J]. Infrared and Laser Engineering, 2011, 40(10): 1918–1922.

[17] Holmes J F, Rask B J. Optimum optical local oscillator power levels in coherent detection systems[J]. Proceedings of SPIE, 1993, 1982: 157–63.

[18] Frehlich R G, Kavaya M J. Coherent laser radar performance for general atmospheric refractive turbulence[J]. Applied Optics, 1991, 30(36): 5325–5352.

[19] Ren Y X, Dang A H, Liu L, et al. Heterodyne efficiency of a coherent free-space optical communication model through at-mospheric turbulence[J]. Applied Optics, 2012, 51(30): 7246–7254.

[20] Dong X, Hu Y, Zhao N, et al. Numerical analysis of linewidth demands in heterodyne lidar[C]//Proceedings of the Advanced Sensor Systems and Applications VIII, Beijing, 2018: 1082113.

[21] Hu Y H, Dong X, Zhao N X, et al. Fast retrieval of atmospheric CO2 concentration based on a near-infrared all-fiber integrated path coherent differential absorption lidar[J]. Infrared Physics & Technology, 2018, 92: 429–435.

胡以华, 董骁, 赵楠翔. Golay 编码差分吸收相干激光雷达研究[J]. 光电工程, 2019, 46(7): 190081. Hu Yihua, Dong Xiao, Zhao Nanxiang. Research on coherent differential absorption LiDAR based on Golay coding technology[J]. Opto-Electronic Engineering, 2019, 46(7): 190081.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!