光电工程, 2020, 47 (3): 190593, 网络出版: 2020-04-05   

OAM光通信技术研究进展

Research advances of orbital angular momentum based optical communication technology
作者单位
1 合肥工业大学计算机与信息学院,安徽 合肥 230009
2 电子科技大学电子科学与工程学院微波电真空器件国家重点实验室,四川 成都 610054
摘要
涡旋光束携带的轨道角动量(OAM)为光波的空间域提供了新的维度资源,吸引了越来越多研究人员的关注。由于具有不同OAM 模式值的涡旋光束相互正交,因此将OAM 模式引入传统光通信领域,衍生出两种新的应用机制——OAM 键控(OAM-SK)与OAM 复用(OAM-DM),这为未来实现高速、大容量及高频谱效率的光通信技术提供了潜在的解决方案。本文将从OAM 光束的类别和产生方法等基本概念理论出发,对这两种通信应用机制相关的典型研究案例做简要概述,并重点论述三种关键技术,包括OAM 光束复用技术、OAM 光束解调技术以及OAM 光通信的大气湍流效应抑制技术。最后,对OAM 光通信技术的未来发展趋势及其前景进行了分析与展望。
Abstract
Orbital angular momentum (OAM) carried by the vortex beam provides a new dimension resource in the spatial domain of light waves, which attracting more and more researching attentions. Since the vortex beams with different OAM mode values are orthogonal to each other, the OAM mode is introduced into the field of traditional optical communication, and two new application mechanisms are derived: OAM shift keying (OAM-SK) and OAM division multiplexing (OAM-DM), which provides a potential solution for future high-speed, high-capacity and high-spectrum efficiency optical communication technologies. Based on the basic concepts and theories of OAM beam types and their generation methods, this paper will give a brief overview of typical research cases related to the application mechanisms of these two communication systems. Three key technologies have been discussed, including OAM beam multiplexing technology, OAM beam demodulation technology, and turbulence suppression technology of OAM-based optical communication. Finally, the future developing trends and prospects of OAM-based optical communication technology are analyzed and forecasted.
参考文献

[1] Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives[J]. Chinese Optics Letters, 2018, 16(5): 050006.

[2] Yi A L, Yan L S, Pan Y, et al. Transmission of multi-dimensional signals for next generation optical communication systems[J]. Optics Communications, 2018, 408: 42-52.

[3] Winzer P J. Modulation and multiplexing in optical communications[C]//Conference on Lasers & Electro-Optics, Baltimore, Maryland United States, 2009.

[4] Zhou X, Yu J J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 2009, 27(16): 3641-3653.

[5] Richter T, Palushani E, Schmidt-Langhorst C, et al. Transmission of single-channel 16-QAM data signals at terabaud symbol rates[J]. Journal of Lightwave Technology, 2012, 30(4): 504-511.

[6] Gnauck A H, Winzer P J, Chandrasekhar S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2011, 29(4): 373-377.

[7] Zhou X, Yu J J, Huang M F, et al. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing[J]. Journal of Lightwave Technology, 2011, 29(4): 571-577.

[8] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345-348.

[9] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

[10] Guo Z Y, Qu S L, Liu S T. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286-289.

[11] Guo Z Y, Qu S L, Sun Z H, et al. Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses[J]. Chinese Physics B, 2008, 17(11): 4199-4203.

[12] Ran L L, Qu S L, Guo Z Y. Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses[J]. Chinese physics B, 2010, 19(3): 034204.

[13] Li Y, Guo Z Y, Qu S L. Living cell manipulation in a microfluidic device by femtosecond optical tweezers[J]. Optics and Lasers in Engineering, 2014, 55: 150-154.

[14] Zhu L, Guo Z Y, Xu Q, et al. Calculating the torque of the optical vortex tweezer to the ellipsoidal microparticles[J]. Optics Communications, 2015, 354: 34-39.

[15] Liu C X, Guo Z Y, Li Y, et al. Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers[J]. Journal of Optics, 2015, 17(3): 035402.

[16] Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165-190.

[17] Berry M V, Nye J F, Wright F J. The elliptic umbilic diffraction catastrophe[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1979, 291(1382): 453-484.

[18] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[19] 袁小聪, 贾平, 雷霆, 等. 光学旋涡与轨道角动量光通信[J]. 深圳大学学报(理工版), 2014, 31(4): 331-346.

    Yuan X C, Jia P, Lei T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University (Science & Engineering), 2014, 31(4): 331-346.

[20] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

[21] Liu Y D, Gao C Q, Gao M W, et al. Superposition and detection of two helical beams for optical orbital angular momentum communication[J]. Optics Communications, 2008, 281(14): 3636-3639.

[22] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16(11): 113028.

[23] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648-13653.

[24] Willner A J, Ren Y X, Xie G D, et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes[J]. Optics Letters, 2015, 40(24): 5810-5813.

[25] Li S H, Wang J. Experimental demonstration of optical interconnects exploiting orbital angular momentum array[J]. Optics Express, 2017, 25(18): 21537-21547.

[26] Fu S Y, Zhai Y W, Yin C, et al. Mixed orbital angular momentum amplitude shift keying through a single hologram[J]. OSA Continuum, 2018, 1(2): 295-308.

[27] Kai C H, Huang P, Shen F, et al. Orbital angular momentum shift keying based optical communication system[J]. IEEE Photonics Journal, 2017, 9(2): 7902510.

[28] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 2015, 40(21): 4827-4830.

[29] Li X K, Li Y, Zeng X N, et al. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying[J]. Journal of Optics, 2018, 20(12): 125604.

[30] Awaji Y, Wada N, Toda Y. Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength[C]//2010 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010: 551-552.

[31] Wang J, Yang J Y, Fazal I M, et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes[C]//2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1-3.

[32] Wang J, Yang J Y, Fazal I M, et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes[C]//IEEE Photonic Society 24th Annual Meeting, Arlington, VA, USA, 2011: 587-588.

[33] Fazal I M, Wang J, Yang J Y, et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM[C]//Frontiers in Optics 2011, San Jose, California United States, 2011.

[34] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[35] Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing[C]//2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 2013: 1-3.

[36] Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Optics Letters, 2014, 39(2): 197-200.

[37] Wang J, Li S H, Li C, et al. Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes[C]//Optical Fiber Communications Conference & Exhibition, San Francisco, CA, USA, 2014: 1-3.

[38] Wang J, Li S H, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C]//2014 the European Conference on Optical Communication, Cannes, France, 2014: 1-3.

[39] Wang J, Liu J, Lv X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]//2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 2015: 1-3.

[40] Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 2015, 4(3): e257.

[41] Zhu Y X, Zou K H, Zheng Z N, et al. 1 λ× 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM[J]. Optics Express, 2016, 24(4): 3967-3980.

[42] Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 2013, 5(5): 7101007.

[43] Yue Y, Yan Y, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535-543.

[44] Li S H, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes)[J]. Scientific Reports, 2014, 4: 3853.

[45] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794-9805.

[46] Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306.

[47] Wang W, Wang P, Cao T, et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence[J]. IEEE Photonics Journal, 2017, 9(5): 7905315.

[48] Zhao Y F, Wang A D, Zhu L, et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 2017, 42(22): 4699-4702.

[49] Zhao Y F, Xu J, Wang A D, et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link[J]. Optics Express, 2017, 25(23): 28743-28751.

[50] Wang A D, Zhu L, Zhao Y F, et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 2018, 26(7): 8669-8678.

[51] Gori F, Guattari G, Padovani C. Bessel-gauss beams[J]. Optics Communications, 1987, 64(6): 491-495.

[52] Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode[J]. Optics Letters, 2015, 40(23): 5463-5466.

[53] Ahmed N, Lavery M P, Huang H, et al. Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum[C]//2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014: 1-3.

[54] Li S H, Wang J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams[J]. Scientific Reports, 2017, 7: 43233.

[55] Mphuthi N, Gailele L, Litvin I, et al. Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams[J]. Applied Optics, 2019, 58(16): 4258-4264.

[56] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.

[57] 王亚军, 李新忠, 李贺贺, 等. 完美涡旋光场的研究进展[J]. 激光与光电子学进展, 2017, 54(9): 090007.

    Wang Y J, Li X Z, Li H H, et al. Research progress of perfect vortex field[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090007.

[58] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 2015, 40(4): 597-600.

[59] Zhu F Q, Huang S J, Shao W, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)[J]. Optics Communications, 2017, 396:50-57.

[60] Wang L, Jiang X C, Zou L, et al. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam[J]. Journal of Modern Optics, 2019, 66(1): 87-92.

[61] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[62] 付时尧, 高春清. 矢量涡旋光束的模式连续可调生成技术 (特邀论文)[J]. 光学学报, 2019, 39(1): 0126014.

    Fu S Y, Gao C Q. Selective generation of arbitrary vectorial vortex beams (Invited Paper)[J]. Acta Optica Sinica, 2019, 39(1): 0126014.

[63] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292-301.

[64] Lavery M P J, Milione G, Nguyen T A, et al. Space division multiplexing in a basis of vector modes[C]//2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014: 1-3.

[65] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843-4846.

[66] Zhang J B, Li F, Li J P, et al. 120 Gbit/s 2× 2 vector-modes-division-multiplexing DD-OFDM-32QAM free-space transmission[J]. IEEE Photonics Journal, 2016, 8(6): 7907008.

[67] Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Optics Letters, 2016, 41(10): 2205-2208.

[68] Fu S Y, Wang T L, Zhang Z Y, et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Applied Physics Letters, 2017, 110(19): 191102.

[69] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO 4 1.3-μm bounce laser[J]. Optics Express, 2007, 15(12): 7616-7622.

[70] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokesvortex laser beam from a self-Raman laser[J]. Optics Express,2013, 21(10): 12401-12409.

[71] Lee A J, Zhang C Y, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 2014,22(5): 5400-5409.

[72] Miao P, Zhang Z F, Sun J B, et al. Orbital angular momentummicrolaser[J]. Science, 2016, 353(6298): 464-467.

[73] Wang S, Zhang S L, Qiao H C, et al. Direct generation of vortexbeams from a double-end polarized pumped Yb:KYW laser[J].Optics Express, 2018, 26(21): 26925-26932.

[74] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al.Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.

[75] Turnbull G A, Robertson D A, Smith G M, et al. The generationof free-space Laguerre-Gaussian modes at millimetre-wavefrequencies by use of a spiral phaseplate[J]. Optics Communications,1996, 127(4-6): 183-188.

[76] Oemrawsingh S S R, Van Houwelingen J A W, Eliel E R, et al.Production and characterization of spiral phase plates for opticalwavelengths[J]. Applied Optics, 2004, 43(3): 688-694.

[77] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beamgenerated with a multilevel spiral phase plate for high intensitylaser pulses[J]. Optics Express, 2004, 12(15): 3548-3553.

[78] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterizationof high-quality spiral phase plates for optical applications[J]. Applied Optics, 2015, 54(13): 4077-4083.

[79] Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate forgenerating and manipulating multiple spiral beams[J]. Journal ofthe Optical Society of America B, 2017, 34(3): 608-612.

[80] Lin J, Yuan X C, Tao S H, et al. Synthesis of multiple collinearhelical modes generated by a phase-only element[J]. Journal ofthe Optical Society of America A, 2006, 23(5): 1214-1218.

[81] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angularmomentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006.

[82] 柯熙政, 薛璞. 轨道角动量叠加态的产生及其检验[J]. 红外与激光工程, 2018, 47(4): 417007.

    Ke X Z, Xue P. Generation of Orbital Angular Momentum superpositionsand its test[J]. Infrared and Laser Engineering,2018, 47(4): 417007.

[83] Mirhosseini M, Magana-Loaiza O S, Chen C C, et al. Rapidgeneration of light beams carrying orbital angular momentum[J].Optics Express, 2013, 21(25): 30196-30203.

[84] Heckenberg N R, McDuff R, Smith C P, et al. Generation ofoptical phase singularities by computer-generated holograms[J].Optics Letters, 1992, 17(3): 221-223.

[85] Beijersbergen M W, Allen L, Van der Veen H E L O, et al. Astigmaticlaser mode converters and transfer of orbital angularmomentum[J]. Optics Communications, 1993, 96(1-3):123-132.

[86] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angularmomentum conversion in inhomogeneous anisotropic media[J].Physical Review Letters, 2006, 96(16): 163905.

[87] Karimi E, Piccirillo B, Nagali E, et al. Efficient generation andsorting of orbital angular momentum eigenmodes of light bythermally tuned q-plates[J]. Applied Physics Letters, 2009,94(23): 231124.

[88] Cardano F, Karimi E, Slussarenko S, et al. Polarization patternof vector vortex beams generated by q-plates with different topologicalcharges[J]. Applied Optics, 2012, 51(10): C1-C6.

[89] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversionof the angular momentum of light and its classical andquantum applications[J]. Journal of Optics, 2011, 13(6): 064001.

[90] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitraryspin-to-orbital angular momentum conversion of light[J].Science, 2017, 358(6365): 896-901.

[91] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631-655.

    Guo Z Y, Wang Y Z, Zheng Q, et al. Advances of research onantenna technology of vortex electromagnetic waves[J]. Journalof Radars, 2019, 8(5): 631-655.

[92] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbitalangular momentum at visible wavelengths using a plasmonicmetasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

[93] Du J, Wang J. Design of on-chip N-fold orbital angular momentummulticasting using V-shaped antenna array[J]. ScientificReports, 2015, 5: 9662.

[94] Du J, Wang J. Dielectric metasurfaces enabling twisted lightgeneration/detection/(de) multiplexing for data informationtransfer[J]. Optics Express, 2018, 26(10): 13183-13194.

[95] Zhao Z, Wang J, Li S H, et al. Metamaterials-based broadbandgeneration of orbital angular momentum carrying vectorbeams[J]. Optics Letters, 2013, 38(6): 932-934.

[96] Wang W, Li Y, Guo Z Y, et al. Ultra-thin optical vortex phaseplate based on the metasurface and the angular momentumtransformation[J]. Journal of Optics, 2015, 17(4): 045102.

[97] Zhao Y F, Du J, Zhang J R, et al. Generating structured lightwith phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm[J]. Applied Physics Letters,2018, 112(17): 171103.

[98] Ma Z J, Li Y, Li Y, et al. All-dielectric planar chiral metasurfacewith gradient geometric phase[J]. Optics Express, 2018, 26(5):6067-6078.

[99] Inavalli V V G K, Viswanathan N K. Switchable vector vortexbeam generation using an optical fiber[J]. Optics Communications,2010, 283(6): 861-864.

[100] Yan Y, Wang J, Zhang L, et al. Fiber coupler for generatingorbital angular momentum modes[J]. Optics Letters, 2011,36(21): 4269-4271.

[101] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert aGaussian beam to higher-order optical orbital angular momentummodes[J]. Optics Letters, 2012, 37(16): 3294-3296.

[102] Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexingof optical orbital angular momentum modes in a ring fiberby using multiple coherent inputs[J]. Optics Letters, 2012,37(17): 3645-3647.

[103] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings[J]. Optics Letters, 2015, 40(17): 4010-4013.

[104] Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376-4379.

[105] 柯熙政, 葛甜. 利用少模光纤产生涡旋光的实验[J]. 中国激光, 2017, 44(11): 176-183.

    Ke X Z, Ge T. Experiment on generation of vortex light with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(11): 176-183.

[106] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

[107] Guan B B, Scott R P, Qin C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit[J]. Optics Express, 2014, 22(1): 145-156.

[108] Su T, Scott R P, Djordjevic S S, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express,2012, 20(9): 9396-9402.

[109] Xiao Q S, Klitis C, Li S M, et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings[J]. Optics Express, 2016, 24(4): 3168-3176.

[110] Zheng S, Wang J. On-chip orbital angular momentum modes generator and (de) multiplexer based on trench silicon waveguides[J]. Optics Express, 2017, 25(15): 18492-18501.

[111] Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip[J]. Optics Letters, 2018, 43(13): 3140-3143.

[112] Yan Y, Xie G D, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876.

[113] Fontaine N K, Doerr C R, Buhl L L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits[C]//OFC/NFOEC, Los Angeles, CA, USA, 2012: 1-3.

[114] 刘永军, 宣丽, 胡立发, 等. 高精度纯相位液晶空间光调制器的研究[J]. 光学学报, 2005, 25(12): 1682-1686.

    Liu Y J, Xuan L, Hu L F, et al. Investigation on the liquid crystal spatial light modulator with high precision and pure phase[J]. Acta Optica Sinica, 2005, 25(12): 1682-1686.

[115] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element[J]. Optics Express, 2015, 23(20): 26221-26233.

[116] Yan Y, Yue Y, Huang H, et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum[J]. Optics Letters, 2013, 38(19): 3930-3933.

[117] Kai C H, Feng Z K, Dedo M I, et al. The performances of different OAM encoding systems[J]. Optics Communications, 2019, 430: 151-157.

[118] Zhang N, Davis J A, Moreno I, et al. Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating[J]. Optics Express, 2010, 18(25): 25987-25992.

[119] Dai K J, Gao C Q, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 2015, 40(4): 562-565.

[120] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 2017, 7: 40781.

[121] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88: 257901.

[122] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 2006, 31(7): 999-1001.

[123] 柯熙政, 胥俊宇. 涡旋光束轨道角动量干涉及检测的研究[J]. 中国激光, 2016, 43(9): 192-197.

    Ke X Z, Xu J Y. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 192-197.

[124] Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 2008, 101(10): 100801.

[125] Guo C S, Lu L L, Wang H T. Characterizing topological charge of optical vortices by using an annular aperture[J]. Optics Letters, 2009, 34(23): 3686-3688.

[126] Berkhout G C G, Beijersbergen M W. Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer[J]. Optics Express, 2010, 18(13): 13836-13841.

[127] Mesquita P H F, Jesus-Silva A J, Fonseca E J S, et al. Engineering a square truncated lattice with light's orbital angular momentum[J]. Optics Express, 2011, 19(21): 20616-20621.

[128] Ferreira Q S, Jesus-Silva A J, Fonseca E J S, et al. Fraunhofer diffraction of light with orbital angular momentum by a slit[J]. Optics Letters, 2011, 36(16): 3106-3108.

[129] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601.

[130] Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4(1): 2781.

[131] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 2018, 120(19): 193904.

[132] 柯熙政, 谢炎辰, 张颖. 涡旋光束轨道角动量检测及其性能改善[J]. 光学学报, 2019, 39(1): 0126017.

    Ke X Z, Xie Y C, Zhang Y. Orbital angular momentum measurement of vortex beam and its performance improvement[J]. Acta Optica Sinica, 2019, 39(1): 0126017.

[133] Feng Z K, Wang X Y, Dedo M I, et al. High-density Orbital Angular Momentum mode analyzer based on the mode converters combining with the modified Mach-Zehnder interferometer[J]. Optics Communications, 2019, 435: 441-448.

[134] Mamadou D, Shen F, Dedo M, et al. High-efficiency sorting and measurement of orbital angular momentum modes based on the March-Zehnder interferometer and complex phase gratings[J]. Measurement Science and Technology, 2019, 30(7): 075201.

[135] Zhou J, Zhang W H, Chen L X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Applied Physics Letters, 2016, 108(11): 111108.

[136] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 2016, 6(4): e16251.

[137] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[138] Knutson E M, Lohani S, Danaci O, et al. Deep learning as a tool to distinguish between high orbital angular momentum optical modes[C]//Optics and Photonics for Information Processing X. International Society for Optics and Photonics, San Diego, California, United States 2016, 9970: 997013.

[139] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 2017, 56(12): 3386-3396.

[140] Li J, Zhang M, Wang D S. Adaptive demodulator using machine learning for orbital angular momentum shift keying[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1455-1458.

[141] Li J, Zhang M, Wang D S, et al. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication[J]. Optics Express, 2018, 26(8): 10494-10508.

[142] Tian Q H, Li Z, Hu K, et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator[J]. Optics Express, 2018, 26(21): 27849-27864.

[143] Zhao Q S, Hao S Q, Wang Y, et al. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network[J]. Applied Optics, 2018, 57(35): 10152-10158.

[144] Jiang S Q, Chi H, Yu X B, et al. Coherently demodulated orbital angular momentum shift keying system using a CNN-based image identifier as demodulator[J]. Optics Communications, 2019, 435: 367-373.

[145] Wang Z K, Dedo M I, Guo K, et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 2019, 11(3): 7903614.

[146] Chi H, Jiang S Q, Ou J, et al. Comprehensive study of orbital angular momentum shift keying systems with a CNN-based image identifier[J]. Optics Communications, 2019, 454: 124518.

[147] Xie G D, Ren Y X, Yan Y, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447-3450.

[148] Li L, Xie G D, Yan Y, et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre-Gaussian beams[J]. Journal of the Optical Society of America B, 2017, 34(1): 1-6.

[149] Guo Z Y, Wang Z K, Dedo M I, et al. The orbital angular momentum encoding system with radial indices of Laguerre-Gaussian beam[J]. IEEE Photonics Journal, 2018, 10(5): 7906511.

[150] Andrews L C, Phillips R L. Laser Beam Propagation through Random Media[M]. 2nd ed. Bellingham, WA: SPIE Press, 2005.

[151] Ke X Z, Wang J, Wang M J. Evolution of degree of polarization of partially coherent beams propagation in slant and horizontal atmospheric turbulence[J]. Indian Journal of Physics, 2019, 93(6): 691-699.

[152] Wang J, Ke X Z, Wang M J. Influence of source parameters and atmospheric turbulence on the polarization properties of partially coherent electromagnetic vortex beams[J]. Applied Optics, 2019, 58(24): 6486-6494.

[153] 柯熙政, 宁川, 王姣. 大气湍流下轨道角动量复用态串扰分析[J]. 红外与激光工程, 2018, 47(11): 1122002.

    Ke X Z, Ning C, Wang J. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence[J]. Infrared and Laser Engineering, 2018, 47(11): 1122002.

[154] 柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 36-42.

    Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 36-42.

[155] 柯熙政, 王超珍. 部分相干涡旋光束在大气湍流中传输时的光强分布[J]. 激光与光电子学进展, 2016, 53(11): 110604.

    Ke X Z, Wang C Z. Intensity distribution of the partially coherent vortex beams propagating in atmospheric turbulence[J]. Laser& Optoelectronics Progress, 2016, 53(11): 110604.

[156] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究[J]. 物理学报, 2014, 63(15): 150301.

    Ke X Z, Chen J, Yang Y M. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence[J]. Acta Physica Sinica, 2014, 63(15): 150301.

[157] 席瑞, 朱冰. OAM 光束短距离自由空间传输特性的实验研究[J]. 光电工程, 2019, 46(6): 180386.

    Xi R, Zhu B. Experimental study on short-distance free-space transmission characteristics of OAM beam[J]. Opto-Electronic Engineering, 2019, 46(6): 180386.

[158] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414-2429.

[159] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142-144.

[160] Malik M, O’Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195-13200.

[161] Rodenburg B, Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 2012, 37(17): 3735-3737.

[162] Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062-4065.

[163] Ren Y X, Xie G D, Huang H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014, 39(10): 2845-2848.

[164] Ren Y X, Xie G D, Huang H, et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 2014, 1(6): 376-382.

[165] Ren Y X, Xie G D, Huang H, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength[J]. Optics Letters, 2015, 40(10): 2249-2252.

[166] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[167] Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[C]//Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II. International Society for Optics and Photonics, San Diego, California, United States, 2005, 5895: 58950P.

[168] Ren Y X, Huang H, Yang J Y, et al. Correction of phase distortion of an OAM mode using GS algorithm based phase retrieval[C]//CLEO: Science and Innovations 2012, San Jose, California United States, 2012.

[169] Fu S Y, Zhang S K, Wang T L, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm[J]. Optics Letters, 2016, 41(14): 3185-3188.

[170] Dedo M I, Wang Z K, Guo K, et al. Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences[J]. Applied Sciences, 2019, 9(11): 2269.

[171] 柯熙政, 王夏尧. 涡旋光波前畸变校正实验研究[J]. 光学学报, 2018, 38(3): 197-203.

    Ke X Z, Wang X Y. Experimental study on the correction of wavefront distortion for vortex beam[J]. Acta Optica Sinica, 2018, 38(3): 197-203.

[172] Xie G D, Ren Y X, Huang H, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm[J]. Optics Letters, 2015, 40(7): 1197-1200.

[173] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 2018, 43(11): 2611-2614.

[174] Huang H, Cao Y W, Xie G D, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization[J]. Optics Letters, 2014, 39(15): 4360-4363.

[175] Ren Y X, Wang Z, Xie G D, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization[J]. Optics Letters, 2016, 41(11): 2406-2409.

[176] Djordjevic I B, Arabaci M. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Optics Express, 2010, 18(24): 24722-24728.

[177] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence[J]. Optics Express, 2018, 26(17): 22182-22196.

[178] Shi C Z, Dubois M, Wang Y, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250-7253.

[179] Willner A E, Ren Y X, Xie G D, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20150439.

郭忠义, 龚超凡, 刘洪郡, 李晶晶, 王子坤, 杨阳, 宫玉彬. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. Guo Zhongyi, Gong Chaofan, Liu Hongjun, Li Jingjing, Wang Zikun, Yang Yang, Gong Yubin. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!