光谱学与光谱分析, 2015, 35 (1): 65, 网络出版: 2015-01-28  

江西“高洲石”的矿物学和谱学特征研究

Mineralogical and Spectral Characteristics of “Gaozhou Stone” from Jiangxi Province
作者单位
1 江西省地质调查研究院, 江西 南昌 330030
2 中国地质大学(北京)珠宝学院, 北京 100083
3 江西省地质矿产勘查开发局赣东北大队, 江西 上饶 334000
摘要
印章石是我国特有的具有民族历史文化特色的艺术品, 江西“高洲石”是近年来新发现并在市场上流通的印章石品种。采用X射线粉晶衍射(XRD)、X射线荧光光谱分析(XRF)、红外光谱分析(FTIR)、扫描电镜(SEM)及差热分析(DTA)对“高洲石”的矿物学特征和谱学特征进行了系统的研究。粉晶衍射结果表明, “高洲石”的主要矿物成分为高岭石族矿物和叶蜡石, 其次含有少量的绢云母和伊利石等。其中高岭石和地开石多型可通过18°~40°(2θ)范围内一系列地开石特有的衍射峰鉴别。“高洲石”中高岭石族矿物同时出现高岭石和地开石的特征衍射峰, 主要为高岭石-地开石过渡矿物。“高洲石”主要化学成分为SiO2和Al2O3, 次要成分为Fe2O3和K2O和Na2O等, 这与高岭石族矿物的化学成分相一致。红外光谱的结果显示“高洲石”中高岭石-地开石过渡矿物在高频区一般出现3 689, 3 645和3 615 cm-1三个谱带, 其中归属于面外羟基振动的3 689 cm-1谱带和面内羟基振动的3 615 cm-1谱带强度近似相等, 部分略有变化, 其变化因含高岭石层或地开石层较多造成。扫描电镜下观察到“高洲石”中高岭石矿物的形态主要呈直径为0.5~4 μm的不规则片状或假六方板状, 与我国其他产地印石的扫描电镜特征较为相似。差热分析结果表明高岭石族矿物的脱羟吸热谷温度与其矿物种属有一定对应关系, 同时此温度还受矿物颗粒大小的影响。综合研究表明, “高洲石”的矿物类型与我国四大印石(寿山石、昌化石、青田石、巴林石)相似, 作为四大印石的替代品, “高洲石”具有广阔的市场前景。
Abstract
The seal stone is a kind of artwork with historical and cultural characteristics of China, which has been playing an important role in Chinese traditional culture. “Gaozhou stone”, a new kind of the seal stone, has been found in the market recently. To investigate the mineralogical and spectral characterastics of “Gaozhou stone”, samples were studied by using XRF, XRD, FTIR, SEM and DTA. Measurements by XRD reveal that kaolin minerals (kaolinite, dickite), pyrophyllite and minor sericite and illite occur in the ores. When kaolinite and dickite are associated, it is not easy to differentiate them from each other. Although some reflections overlap others, kaolin polytypes can be differentiated by XRD patterns in the range 18°~40° (2θ), the reflections at 0.395, 0.379, 0.343, 0.326, 0.294, 0.280, 0.232 and 0.221 nm are diagnostic of dickite. The XRD results indicate the presence of transitional mineral of kaolinite and dickite in these samples. The main chemical components of “Gaozhou stone” are SiO2 and Al2O3 with minor Fe2O3, K2O and Na2O, corresponding with that of kaolin minerals. The OH groups in kaolin group minerals have attracted considerable attention as a sensitive indicator of structural disorder. In principle, dickite has three bands, whereas kaolinite has four bands at the OH-stretching region. According to the results of FTIR, transitional mineral of kaolinite and dickite in “Gaozhou stone” has 3 absorption bands of 3 670, 3 650 and 3 620 cm-1 in high frequency region. The intensity of 3 670 cm-1 band that belongs to outer layer hydroxyl vibration is approximately equal to the intensity of 3 620 cm-1 band ascribing to inner layer OH vibration. This value will only have subtle changes due to the different component ratio of kaolinite and dickite layers. Micro-morphology viewed by SEM presents irregular platy or pseudo-hexagonal platy particles with an average diameter of 0.5~4 μm of “Gaozhou stone”. Such morphologies are quite similar to other seal stones of China that the formation environments of all these stones are of the same kind. DTA curves demonstrate that the disparity of dehydroxylation temperature can be seen as a differential feature for identifying kaolin group minerals, but that is not undoubted. And what’s more, the size of the mineral grains seems has a greater effect on the disparity of dehydroxylation temperature. This research shows that the mineral type of “Gaozhou stone” is similar to “Four Famous stones of China”, and it could be a viable substitute of other famous seal stones. In this point, “Gaozhou stone” has a broad market prospect.
参考文献

[1] ZHANG Shou-liang, CUI Wen-yuan (张守亮, 崔文元). Journal of Gems & Gemmology(宝石和宝石学杂志), 2002, 4(3): 22.

[2] LIAO Zong-ting, TENG Ying, XU Yao-ming, et al(廖宗廷, 腾英, 许耀明, 等). Journal of Gems & Gemmology(宝石和宝石学杂志), 2002, 4(3): 26.

[3] ZHU Xuan-min(朱选民). Acta Petrologica Et Mineralogica(岩石矿物学杂志), 2003, 22(1): 65.

[4] Bailey S W, Structures of Layer Silicates. In: Brindley G W, Brown G, eds., Crystal Structures of Clay Minerals and Their X-ray Identification. London: Mineralogical Society, 1980. 1.

[5] WEN Lu, LIANG Wan-xue, ZHANG Zheng-gang, et al(闻辂, 梁婉雪, 章正刚, 等). The Infrared Spectroscopy of Minerals(矿物红外光谱学). Chongqing: Chongqing University Press(重庆: 重庆大学出版社), 1988. 89.

[6] Choo C O, Kim S J. Clay and Clay Minerals, 2004, 52(6): 749.

[7] Johnston C T, Kogel J E, Bish D L, et al. Clay and Clay Minerals, 2008, 56(4): 470.

[8] REN Lei-fu (任磊夫). Clay Minerals and Clay Rocks(粘土矿物与粘土岩). Beijing: Geological Publishing House(北京: 地质出版社), 1992. 13.

[9] YANG Ya-xiu, ZHANG Nai-xian, SU Zhao-bing, et al(杨雅秀, 张乃娴, 苏昭冰, 等). Clay Minerals of China(中国粘土矿物). Beijing: Geological Publishing House(北京: 地质出版社), 1994. 20.

袁野, 施光海, 楼法生, 吴师金, 史淼, 黄安杰. 江西“高洲石”的矿物学和谱学特征研究[J]. 光谱学与光谱分析, 2015, 35(1): 65. YUAN Ye, SHI Guang-hai, LOU Fa-sheng, WU Shi-jin, SHI Miao, HUANG An-jie. Mineralogical and Spectral Characteristics of “Gaozhou Stone” from Jiangxi Province[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 65.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!