光谱学与光谱分析, 2019, 39 (1): 269, 网络出版: 2019-03-17  

苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附作用的研究

Biosorption of Lead, Copper, Cadmium, Zinc and Chromium Ions from Aqueous Solutions by Tartary Buckwheat Tea Particles
作者单位
成都医学院公共卫生学院, 四川 成都 610500
摘要
生物吸附法以其材料易得、 吸附效果好、 易解析、 环境友好等优点而被广泛的应用于水溶液中低浓度重金属离子的吸附去除。 光谱学显示苦荞茶含有多种基团且表面结构疏松, 对水溶液中金属离子具有一定吸附潜力。 探讨苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附作用光谱分析。 采用扫描电镜(SEM)、 能谱分析(EDS)、 傅里叶红外光谱(FTIR)对苦荞茶吸附铅、 铜、 镉、 锌、 铬前后进行表征, 初步解析苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附作用。 使用等温吸附方程(Langmuir, Freundlich, Temkin和Dubinin-Radushkevich) 与动力学方程(准一级、 准二级和颗粒内扩散)来评价苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附方式及行为。 响应面法是一种数学建模的优化方法, 能回归拟合各因素与实验结果之间的函数关系, 从而确定实验因素及其交互作用对目标值的影响程度。 采用响应面法考察目标离子初始浓度(A)、 吸附剂颗粒大小(B)、 吸附剂投加量(C)和吸附时间(D)四个因素对苦荞茶吸附水溶液中铅、 铜、 镉、 锌、 铬离子能力的影响作用及程度。 等温吸附方程显示, 苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附方式以多层吸附方式为主, 伴有其他吸附类型, 苦荞茶对目标重金属吸附量排序为: 铅>镉>铜>锌>铬, 即为: 30.67>16.18>13.85>10.81>8.43 mg·g-1。 动力学方程与苦荞茶扫描电镜(SEM)提示, 苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附过程符合准二级动力学, 其吸附速率由液膜扩散和颗粒内扩散作用共同控制, 而且苦荞茶表面疏松的结构出现表面趋于平滑, 孔洞出现融合的现象。 能谱分析(EDS)与傅里叶红外光谱(FTIR)证实了水溶液中铅、 铜、 镉、 锌、 铬离子被苦荞茶所吸附, 苦荞茶中-OH, -CH2, -CH3, CO, -NH, -C-O, CH基团参与水溶液中铅、 铜、 镉、 锌、 镉离子结合吸附作用并存在同一类型的基团吸附结合不同目标离子的现象。 响应面法构建考察因素影响苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子去除能力模型, 其调整回归决定系数分别为Adj R2Pb=97.10, Adj R2Cu=98.44, Adj R2Cd=94.55, Adj R2Zn=92.71, Adj R2Cr=97.02, 说明非线性模型可用来评价考察因素对苦荞茶吸附水溶液中铅、 铜、 镉、 锌、 铬离子影响作用。 响应面法分析表明, 考察因素[离子初始浓度(A)、 吸附剂颗粒大小(B)、 吸附剂投加量(C)和吸附时间(D)]对铅、 铜、 镉、 锌、 铬离子去除率影响作用大小排序为: 铅离子(A>D>B>C)、 铜离子(A>C>D>B)、 镉离子(A>B>C>D)、 锌离子(B>C>A>D)、 铬离子(C>B>D>A)。 研究结果说明, 苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子具有良好的吸附作用, 为苦荞茶拓展新的应用途径提供了参考依据。
Abstract
Biosorption, with many advantages such as low-cost of sources, good adsorption effect, easily desorption, good recycling and being environmental-friendly, has been regarded as a cost-effective technology for heavy metals uptake at low metal concentrations. In this paper, the potentials and mechanisms of biosorption of lead ion, copper ion, cadmium ion, zinc ion and chromium ion in the single-ion aqueous solution using tartary buckwheat tea powders were investigated by spectral analysis. Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared Spectroscopy (FTIS) were used to characterize tartary buckwheat tea powders before and after the adsorption processes to identify the functional groups and elements which had changed, furthermore, to explore the possible mechanisms of the biosorption. The models of the adsorption isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich) and the adsorption kinetics (pseudo-first order, pseudo-second order and intraparticle diffusion equation) were used to fit the adsorption behaviors. Response surface methodology is a collection of statistical and mathematical techniques based on fitting a polynomial equation to the experimental data. It can be well applied when a response or a set of responses of interest are affected by several factors. The response surface methodology was applied to evaluate the combined effects of various factors, namely initial metal ion concentration (A), adsorbent particle size (B), adsorbent dose (C) and contact time (D) on the removal rates of lead ion, copper ion, cadmium ion, zinc ion and chromium ion from aqueous solution using tartary buckwheat tea powders. The results of isotherm models indicated that the biosorption was mainly heterogeneous adsorption, accompanying other adsorption behaviors. The models of kinetic revealed that biosorption processes fitted a pseudo-second kinetic well, which suggests that the adsorption rates were controlled by effects of film diffusion and intraparticle process and the surface of tartary buckwheat tea powders changed into smoothed and melted. The lead ion, copper ion, cadmium ion, zinc ion and chromium ion onto surface of tartary buckwheat tea powders were confirmed by Energy Dispersive Spectrometer. The Fourier transform infrared spectra results exhibited that -OH, -CH2, -CH3, CO, -NH, -C-O, CH played major roles on removal lead ion, copper ion, cadmium ion, zinc ion and chromium ion using tartary buckwheat tea powders in single-ion aqueous solution. The results showed that the five values of the nonlinear models of coefficient constant were Adj R2Pb=97.10, Adj R2Cu=98.44, Adj R2Cd=94.55, Adj R2Zn=92.71 and Adj R2Cr=97.02, respectively for removal rates of lead ion, copper ion, cadmium ion, zinc ion and chromium ion in the aqueous solution using tartary buckwheat tea powders under conditions of various factors, which could navigate the design space for various factors on effects of biosorption the metal ions from aqueous solution. The effects of factors were in order as A>D>B>C on removal rate lead ion, A>C>D>B on removal rate copper ion, A>B>C>D on removal rate cadmium ion, B>C>A>D on removal rate zinc ion and C>B>D>A on removal rate chromium ion, respectively by tartary buckwheat tea powders from single-ion aqueous solution. The study of results provided evidences that tartary buckwheat tea powders can be used for removing lead ion, copper ion, cadmium ion, zinc ion and chromium ion from single-ion aqueous solution.
参考文献

[1] Ekere N R, Agwogie A B, Ihedioha J N. International Journal of Phytoremediation, 2016, 18(2): 116.

[2] Manzoor Q, Nadeem R, Iqbal M, et al. Bioresource Technology, 2013, 132(2): 446.

[3] Pillai S S, Mullassery M D, Fernandez N B, et al. Ecotoxicology & Environmental Safety, 2013, 92(3): 199.

[4] Areco M M, Hanela S, Duran J, et al. Journal of Hazardous Materials, 2012, 213-214(3): 123.

[5] Lee Y C, Chang S P. Bioresour Technol, 2011, 102(9): 297.

[6] WAN Shun-li, XUE Yao, MA Zhao-zhao, et al(万顺利, 薛 瑶, 马钊钊, 等). Environmental Science(环境科学), 2014, 35(10): 3782.

[7] Thines K R, Abdullah E C, Mubarak N M, et al. Renewable & Sustainable Energy Reviews, 2017, 67: 257.

[8] DUAN Hao-ping, ZHANG Dong-ying, GONG Shu-jing, et al(段浩平, 张冬英, 龚舒静, 等). Southwest China Journal of Agricultural Sciences(西南农业科学), 2014, 27(3): 1260.

[9] Zengdi W, Ping Y, Rongjun Q. Food Chem., 2013, 136(3-4): 1508.

[10] Flouty R, Estephane G. Journal of Environmental Management, 2012, 111(6): 106.

[11] Javaid A, Bajwa R, Shafique U, et al. Biomass & Bioenergy, 2011, 35(5): 1675.

[12] Ekere N R, Agwogie A B, Ihedioha J N. International Journal of Phytoremediation, 2016, 18(2): 116.

[13] Cobas M, Sanromán M A, Pazos M. Bioresource Technology, 2014, 160: 166.

[14] Ferreira S L, Bruns R E, Ferreira H S, et al. Analytica Chimica Acta, 2007, 597(2): 179.

[15] Liu Xin, Chen Zhaoqiong, Han Bin, et al. Ecotoxicology & Environmental Safety, 2018, 150: 251.

[16] Boudechiche N, Yazid H, Trari M, et al. Environmental Science & Pollution Research, 2017, (62): 1.

[17] HUANG Xue-qin, LI Tian-yong, GUO Shi, et al(黄雪琴, 李天勇, 郭 诗, 等). China Environmental Science(中国环境科学), 2017, 37(9): 3363.

[18] JI Ze-hua, FENG Chong-ling, LI Liu-gang (冀泽华, 冯冲凌, 李刘刚). Environmental Chemistry(环境化学), 2017, 36(1): 123.

杨立志, 贺丽, 何旭, 彭胜寒, 王荣, 陈朝琼, 杨晓虹, 刘新. 苦荞茶对水溶液中铅、 铜、 镉、 锌、 铬离子吸附作用的研究[J]. 光谱学与光谱分析, 2019, 39(1): 269. YANG Li-zhi, HE Li, HE Xu, PENG Sheng-han, WANG Rong, CHEN Zhao-qiong, YANG Xiao-hong, LIU Xin. Biosorption of Lead, Copper, Cadmium, Zinc and Chromium Ions from Aqueous Solutions by Tartary Buckwheat Tea Particles[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 269.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!