光谱学与光谱分析, 2019, 39 (1): 31, 网络出版: 2019-03-17   

QEPAS系统中石英音叉模态仿真计算与研究

Modal Simulation Calculation and Research of Tuning Fork Based on QEPAS System
作者单位
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230031
3 安徽理工大学矿山智能装备与技术安徽省重点实验室, 安徽 淮南 232001
摘要
对石英音叉增强型光声光谱(QEPAS)系统中常用的石英音叉进行了有限元模态计算, 获得石英音叉前6阶振型与模态频率, 认知了第4阶对称摆动振型为有效振动, 利用单因素法分析了石英音叉的音臂长度l1、 音臂宽度w1、 音臂厚度t、 音臂切角θ、 音臂圆孔直径d及音臂圆孔高度h对低阶有效共振频率(Fre)的影响, 敏感度依次为: l1> w1>d>θ>t>h, 考虑实际设计情形, 筛选出了l1, w1, d与h四个石英音叉设计变量, 采用Box-Behnken实验设计方案与RSM(response surface methodology)方法, 以Fre为函数目标, 建立l1, w1, d与h的二次回归响应面模型, 得到了参数之间的交互作用, 利用Design-Expert软件对响应面模型进行设计参数反求, 结果表明, 在15 000 Hz≤Fre≤25 000 Hz计算区域内误差较小, 基本满足QEPAS系统的计算需求, 所提出的研究与设计方法具有一定通用性, 可为QEPAS系统中石英音叉结构参数设计提供参考。
Abstract
The finite element modes of the quartz tuning fork in the Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) system were calculated and the first 6 modes and modal frequencies of the quartz tuning fork were obtained. The 4th order symmetrically oscillating vibration mode was recognized as an effective vibration. Single factor method was used to analyze the effects of fork’s arm length l1, fork’s arm width w1, fork’s arm thickness t, fork’s arm cutting angle θ, fork’s arm diameter d and fork’s arm round hole height h on low effective resonance frequency (Fre). The results of the sensitivity sensitivity were as follows: l1>w1>d>θ>t>h. Considering the actual design situation, four design parameters of quartz tuning fork l1, w1, d and h were screened. Using Box-Behnken experimental design and RSM (Response Surface Methodology) method, Fre was set as a function target to establish l1, w1, d and h quadratic regression response surface model, and get the interaction between the parameters. The Design-Expert software was used to inverse the design parameters of the response surface model. The results showed that the error in the calculation area of 15 000 Hz≤Fre≤25 000 Hz is small, and basically meets the calculation requirements of QEPAS system. The proposed research and design methods have some generality, which can provide references for the design of quartz tuning fork structure in QEPAS system.
参考文献

[1] Kosterev A A, Tittel F K, Curl R F, et al. Optics Letters, 2002, 27(21): 1902.

[2] Ma Y, Yu X, Yu G, et al. Applied Physics Letters, 2015, 107(2): 1993.

[3] MA Yu-fei, YU Guang, ZHANG Jing-bo, et al(马欲飞, 于 光, 张静波, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(11): 3003.

[4] Dong L, Wu H, Zheng H, et al. Optics Letters, 2014, 39(8): 2479.

[5] Zheng H, Dong L, Sampaolo A, et al. Applied Physics Letters, 2016, 109(11): 1902.

[6] Wu H, Yin X, Dong L, et al. Applied Physics Letters, 2017, 110(12): 121104.

[7] Liu K, Guo X, Yi H, et al. Optics Letters, 2009, 34(10): 1594.

[8] Yi H, Liu K, Chen W, et al. Optics Letters, 2011, 36(4): 481.

[9] WANG Gui-shi, YI Hong-ming, CAI Ting-dong, et al(王贵师, 易红明, 蔡廷栋, 等). Acta Physica Sinica(物理学报), 2012, 61(12): 120701.

[10] ZHANG Zhou-qiang, JIA Shu-hai, MA Bin-shan(张周强, 贾书海, 马斌山). Journal of Xi’an Jiaotong University(西安交通大学学报), 2014, 48(7): 96.

[11] GU Hai-ming, ZHOU Yong-jun(顾海明, 周勇军). Theory and Application of Mechanical Vibration(机械振动理论与应用). Nanjing: Southeast University Press(南京: 东南大学出版社), 2007.

[12] Usher M B. Catena, 2001, 42(2-4): 375.

[13] HE-Wei, XUE Wei-dong, TANG Bin(何 为, 薛卫东, 唐 斌). Optimizing Experimental Design Method and Data Analysis(优化实验设计方法及数据分析). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2012. 218.

程刚, 曹渊, 刘锟, 曹亚南, 田兴, 陈家金, 杨刚, 高晓明. QEPAS系统中石英音叉模态仿真计算与研究[J]. 光谱学与光谱分析, 2019, 39(1): 31. CHENG Gang, CAO Yuan, LIU Kun, CAO Ya-nan, TIAN Xing, CHEN Jia-jin, YANG Gang, GAO Xiao-ming. Modal Simulation Calculation and Research of Tuning Fork Based on QEPAS System[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 31.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!