光谱学与光谱分析, 2019, 39 (6): 1953, 网络出版: 2019-07-10  

激光诱导击穿光谱用于NaCl溶液中Na元素含量分析

Determination of Na Element in NaCl Solution by Laser Induced Breakdown Spectroscopy
作者单位
1 长春工业大学电气与电子工程学院, 吉林 长春 130012
2 长春理工大学理学院, 吉林 长春 130022
摘要
为了研究Na元素在水中的检测灵敏度, 采用激光诱导击穿光谱检测NaCl溶液中的Na元素。 选择NaⅠ589.0 nm和NaⅠ589.6 nm作为分析谱线, 利用配置的六种浓度的NaCl溶液, 采用外标法、 内标法以及小波变换降噪法, 给出了NaCl溶液中Na元素的定标曲线。 发现通过内标法获得的定标曲线的线性相关系数r达到0.998, 优于外标法(r=0.985), 并且优于小波降噪后外标法(r=0.986)。 相对外标法而言, 小波变换降噪法有效降低了LIBS光谱中的连续背景光谱噪声, 使LIBS的RSD从5.68%降至1.61%, 从而使LOD值从50.8 μg·mL-1降至19.54 μg·mL-1, 内标法选择NaⅠ589.0 nm和NaⅠ589.6 nm钠原子谱线与内标参考谱线HⅠ656.2 nm氢原子谱线强度比值能有效的克服实验条件波动带来的影响, 因此, 内标法给出的NaCl溶液中Na元素的定标曲线的线性相关系数最大。 而对于小波变换降噪处理方法, 能够有效的降低LIBS光谱的连续背景带来的噪声, 但不能克服实验条件波动对LIBS光谱信息的影响, 因此小波变化降噪方法能够提高LIBS的RSD, 但对降噪处理后的外标法给出的定标曲线的线性相关系数的提高影响不大。 说明内标法有效的提高了检测灵敏度, 减弱了实验条件波动带来的影响, 定标曲线具有更好的线性相关性。 而小波变换降噪处理后有效降低了LIBS光谱中的连续背景光谱噪声, 实现LIBS检测限变低。 谱线NaⅠ589.0 nm为分析谱线得到的RSD和LOD值小于以谱线NaⅠ589.6 nm为分析谱线的结果, NaⅠ589.0 nm和NaⅠ589.6 nm这两谱线的上能级分别为2.104和2.102 eV, 发现分析谱线的上能级对NaCl溶液中的Na元素的RSD和LOD值有影响, 存在上能级大, 而RSD和LOD值较小的现象。 研究结果表明, LIBS技术可以实现溶液中元素的原位实时检测, 并在水污染检测方面受到广泛关注。
Abstract
In order to study the detection sensitivity of Na elements in water, the Na elements in NaCl solution were detected by laser induced breakdown spectroscopy. Choosing NaⅠ589.0 nm and NaⅠ589.6 nm as analytical spectral lines, we used the NaCl solution with 6 kinds of concentration and adopted external standard method, internal standard method and wavelet transformation noise reduction method to present NaCl solution Na element calibration curve, finding that the linear correlation coefficient r of calibration curve obtained by using internal standard method is 0.998, better than that of calibration curve obtained by using external standard method (r=0.985), and is superior to the external standard method after wavelet noise reduction (r=0.986). In contrast, the wavelet transformation reduced the RSD from 5.68% to 1.61%, thereby reducing the LOD value from 50.8 to 19.54 μg·mL-1. The internal standard method selects the NaⅠ589.0 nm and NaⅠ589.6 nm sodium atomic line and the internal standard reference line HⅠ656.2 nm hydrogen atom line intensity ratio can effectively overcome the impact of experimental conditions fluctuations, therefore, the linear correlation coefficient of the calibration curve of Na element in NaCl solution obtained by using the internal standard method is the largest. For the wavelet transformation noise reduction processing method, the noise caused by the continuous background of the LIBS spectrum can be effectively reduced, and the influence of the experimental condition fluctuation on the LIBS spectral information cannot be overcome. Therefore, the wavelet variation noise reduction method can improve the RSD of the LIBS, but has little effect on -the improvement of the linear correlation coefficient of the calibration curve given by the external standard method after noise processing. It is indicated that the internal standard method effectively improves the detection sensitivity and reduces the influence of fluctuations in experimental conditions. The calibration curve has a better linear correlation. The wavelet transformation noise reduction process effectively reduces the continuous background spectral noise in the LIBS spectrum, and the LIBS detection limit becomes lower. The RSD and LOD values obtained by analyzing the line of NaⅠ589.0 nm are smaller than those of the line with the line NaⅠ589.6 nm. The upper levels of the two lines of NaⅠ589.0 nm and NaⅠ589.6 nm are 2.104 and 2.102 eV respectively. It was found that the upper level of the analytical line has an effect on the RSD and LOD values of the Na element in the NaCl solution, and the upper level is large, while the RSD and LOD values are small. The results of this study showed that LIBS technology can realize rapid detection of heavy metal elements in solution, and has potential application prospect in environmental water pollution detection.
参考文献

[1] Hahn D W, Omenetto N. Applied Spectroscopy, 2012, 66(4): 347.

[2] DU Chuang. GAO Xun, SHAO Yan, et al(杜 闯, 高 勋, 邵 妍, 等), Acta Physica Sinica(物理学报), 2013, 62(4): 221.

[3] Bak M S, Mcgann B, Carter C, et al. Journal of Physics D: Applied Physics, 2016, 49(12): 125202.

[4] Wang J, Li X, Li H, et al. Applied Physics B, 2017, 123(4): 131.

[5] Heilbrunner H, Huber N, Wolfmeir H, et al. Applied Physics A, 2012, 106(1): 15.

[6] HU Li, ZHAO Nan-jing, LIU Wen-qing, et al(胡 丽, 赵南京, 刘文清, 等). Journal of Optics(光学学报), 2015, 36(6): 314.

[7] ZHANG Qiao, HU Zhen-hua, DING Lei, et al(张 巧, 胡振华, 丁 蕾, 等). China Laser(中国激光), 2013, 40(2): 236.

[8] YU Chun-zi, YU Wei-jia, YANG Chao, et al(禹纯子, 俞卫佳, 杨 超, 等). Journal of Atomic and Molecular Physics(原子与分子物理学报), 2017, 34(1): 95.

[9] YAN Jing, DING Lei, GE Lin-lin, et al(闫 静, 丁 蕾, 葛琳琳, 等). China Laser(中国激光), 2012, 39(2): 210.

[10] Skoovská K, Novotny J, Prochazka D, et al. Review of Scientific Instruments, 2016, 87(4): 233.

[11] Ahmed R, Iqbal J, Aslam Baig M. Laser Physics Letters, 2015, 12(6): 066102.

[12] ZHENG Pei-chao, LIU Hong-di, WANG Jin-mei, et al(郑培超, 刘红弟, 王金梅, 等). Journal of Photon(光子学报), 2014, 43(9): 82.

[13] Guo Y M, Deng L M, Yang X Y, et al. Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2401.

[14] Zou X H, Guo L B, Shen M, et al. Optics Express, 2014, 22(9): 10233.

[15] SONG Chao, ZHANG Ya-wei, GAO Xun, et al(宋 超, 张亚维, 高 勋, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(6): 1885.

林晓梅, 郭明, 王兴生, 高勋. 激光诱导击穿光谱用于NaCl溶液中Na元素含量分析[J]. 光谱学与光谱分析, 2019, 39(6): 1953. LIN Xiao-mei, GUO Ming, WANG Xing-sheng, GAO Xun. Determination of Na Element in NaCl Solution by Laser Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1953.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!