光谱学与光谱分析, 2020, 40 (5): 1402, 网络出版: 2020-12-09  

荧光光谱法研究苯乙醇胺A与CdTe纳米材料的相互作用

Study on Interaction Between Phenylethanolamine A and CdTe Nanomaterials by Fluorescence Spectroscopy
熊艳 1,2徐俊 1,2邱素艳 1,2魏益华 1,2张金艳 1,2,*
作者单位
1 江西省农业科学院农产品质量安全与标准研究所, 江西 南昌 330200
2 农业农村部农产品畜禽产品质量安全风险评估实验室(南昌), 江西 南昌 330200
摘要
苯乙醇胺A属于β-受体激动剂类药物, 被不法分子应用到动物的饲料中, 可使动物体内的营养成分由脂肪向肌肉转移, 显著提高胴体瘦肉率, 但是人食用后, 可引起头痛, 心律失常, 甚至威胁生命。 目前主要的检测方法是液相色谱串联质谱法, 但有关它与CdTe纳米材料的相互作用少见报道。 研究直接提出应用荧光光谱法实现对兽药残留苯乙醇胺A的检测。 首先利用巯基丙酸作为稳定剂, 采用微波辐射加热10 min即可合成CdTe纳米材料。 该CdTe纳米材料具有良好的荧光性能, 以365 nm为激发波长时, 在650 nm处有明显的荧光发射峰, 荧光强度达3 000, 量子产率约52.341%, 半峰宽为45 nm。 其次将苯乙醇胺A加入到CdTe纳米材料的体系里, 发现随着苯乙醇胺A浓度的增大, 该体系的荧光强度得到增强。 随后对二者之间的影响因素如体系的缓冲溶液、 反应时间、 反应体系的pH、 试剂加入顺序、 共存离子、 温度等进行考察。 建立了一种检测猪尿中的苯乙醇胺A的荧光增敏方法, 并对反应机理进行了初步探讨。 当苯乙醇胺A溶液的浓度为8~120 μg·L-1时, 与CdTe纳米材料体系的荧光增强强度具有一定的线性关系。 其线性回归方程F/F0=0.001 9C+1.032 1, 线性相关系数为0.996, 检出限为3.5 μg·L-1。 同时, 将该方法与传统的液相色谱-串联质谱联用法相比较, 研究结果表明, 采用荧光增敏方法对猪尿中的苯乙醇胺A进行检测分析是快速和可行的。
Abstract
Phenylethanolamine A (PA) is a new adrenergic agonist and can improve feed utilization and the lean meat percentage of carcasses of livestock. But the drug residue would lead to a great threaten to human, such as nausea, dizziness,limbweakness, hand tremor and other symptoms of poisoning. Long-term consumption may lead to mutations in the body’s chromosomes, induced malignant tumorsetc. At present, the main detection method is liquid chromatography-tandem mass spectrometry (LC-MS-MS). The interaction between PA and CdTe nanomaterials is rarely reported. In this study, the water-soluble CdTe nanomaterials were prepared by microwave heating method,using mercaptopropionic acid as a stabilizer. The products have good fluorescence properties. The quantum yield of the CdTe nanomaterials was measured to be 0.523 4, and the half-peak width was about 45 nm. By using CdTe nanomaterials as fluorescent probe, based on the enhancement of the fluorescence intensity of CdTe nanomaterials by PA, a simple, rapid and sensitive method for the determination of PA was proposed and validated.Furthermore,the possible mechanism of interaction between CdTe nanomaterials and PA was discussed.Effects of experimental conditions were investigated. The optimal conditions were as follows: buffer: pH 7.4 KH2PO4-Na2HPO4 solution,concentration of PA:100 μg·L-1, reaction time: 15 min, reaction temperature: 20 ℃. Under the optimal conditions, a good linearity was obtained between fluorescence intensity and PA concentration in the range of 8~120 μg·L-1 with a correlation coefficient of 0.996.The obtained linear regression equation was: F /F0=0.001 9c+1.032 1 and the limit of detection was 3.5 μg·L-1.The proposed method was successfully applied in the determination of PA in swine urine samples, at the same time, the method is compared with the traditional liquid chromatography tandem mass spectrometry. The result indicated that the combination of CdTe nanomaterials and PA produced a nice labelling effect, and this method is fast, feasible and effective.
参考文献

[1] Elbert A H, Piet V Z, Aldo P, et al. Anal. Chem., 1998, 70: 1362.

[2] Howells L, Sauer M, Sayer R, et al. Anal. Chim. Acta, 1993, 275: 275.

[3] Shao B, Jia X F, Zhang J, et al. Food Chemistry, 2009, 114: 1115.

[4] Wang P, Liu X, Su X, et al. Food Chem., 2015, 184: 72.

[5] Wang B B, Wang Q, Cai Z X, et al. LWT—Food Science and Technology, 2015, 61: 368.

[6] Announcement No.1519 of the Ministry of Agriculture of the People’s Republic of China(中华人民共和国农业部1519号公告) . 2010.

[7] SUN Wu-yong, ZHAO Bing-lin, ZHANG Shou-jie, et al(孙武勇, 赵冰琳, 张守杰, 等). Chinese Journal of Chromatography(色谱), 2012, 30(10): 1008.

[8] XIANG Zi-lai(项自来). Development of Monoclonal Antibody to Phenylethanolamine A and Establishment of ELISA Method(苯乙醇胺A单克隆抗体的研制及ELISA检测方法的建立). Yangzhou: Yangzhou University(扬州: 扬州大学), 2018.

[9] Ministry of Agriculture of the People’s Republic of China(中华人民共和国农业部). Determination of Phenylethanolamine A in Feed by High Performance Liquid Chromatography: NY/T3140—2017(饲料中苯乙醇胺A的测定 高效液相色谱法: NY/T3140—2017). Beijing: China Agricultural Press(北京: 中国农业出版社), 2018. 5.

[10] ZHANG Chun-yan, WANG Pei-long, SHI Lei, et al(张春艳, 王培龙, 石 雷, 等). Chinese Journal of Analytical Chemistry(分析化学), 2016, 44(12): 1859.

[11] Wu Le, Lin Zhengzhong, Zhong Huiping, et al. Food Chemistry, 2017, 229: 847.

[12] Raksawong Phannika, Chullasat Kochaporn, Nurerk Piyaluk, et al. Analytical and Bioanalytical Chemistry, 2017, 409: 4697.

[13] Xu Xixi, Dong Liu, Luo Lijun, et al. Sensors and Actuators B: Chemical, 2017, 251: 564.

[14] ZHANG Jin-yan, WEI Yi-hua, LIAO Qie-gen, et al(张金艳, 魏益华, 廖且根, 等). Quality and Safety of Agricultural Products(农产品质量与安全), 2015, (2): 51.

[15] Taylor D G, Demas J N, Taylor R P, et al. Biophysical Journal, 1978, 24(1): 77.

熊艳, 徐俊, 邱素艳, 魏益华, 张金艳. 荧光光谱法研究苯乙醇胺A与CdTe纳米材料的相互作用[J]. 光谱学与光谱分析, 2020, 40(5): 1402. XIONG Yang, XU Jun, QIU Su-yan, WEI Yi-hua, ZHANG Jin-yan. Study on Interaction Between Phenylethanolamine A and CdTe Nanomaterials by Fluorescence Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1402.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!