光谱学与光谱分析, 2021, 41 (3): 813, 网络出版: 2021-04-07  

互叶白千层不同部位油细胞分布及显微拉曼光谱研究

Oil Cells Distribution on Different Parts of Melaleuca Alternifolia and Its Research by Micro-Raman Spectroscopy
作者单位
1 楚雄师范学院云南省高校分子光谱重点实验室, 云南 楚雄 675000
2 楚雄师范学院光谱应用技术研究所, 云南 楚雄 675000
摘要
为避免复杂的制样提取过程, 在天然状态下获得植物样品油细胞中精油的成分, 用显微拉曼光谱仪, 得到互叶白千层同一植株不同部位的油细胞的分布及油细胞中的主成分。 对各部位的显微镜观察发现在软枝干中不存在油细胞或者很少, 老叶中的油细胞没有新叶中的多。 在老叶油细胞上获得的谱峰中, 1 675和726 cm-1为4-萜烯醇的特征峰, 归属为CC伸缩振动和环的变形振动; 1 700和754 cm-1为γ-松油烯的特征峰, 归属为CC伸缩振动和环的变形振动; 1 609 cm-1为α-松油烯的特征峰, 归属为CC伸缩振动; 1 522, 1 156和1 011 cm-1为β-胡萝卜素的的特征峰, 分别归属为CC伸缩振动、 C—C伸缩振动和C—C面内摇摆振动。 在新叶油细胞上获得的谱峰中, 745 cm-1为顺香桧烯水合物的特征峰, 归属为环变形振动; 1 609 cm-1为α-松油烯的特征峰; 1 525, 1 160和1 008 cm-1为β-胡萝卜素的的特征峰; 老叶与新叶油细胞中的主成分不完全相同, 老叶中油细胞精油为γ-松油烯—4-萜烯醇-α-松油烯型, 而新叶中油细胞中的精油为顺香桧烯水合物-α-松油烯型。 老叶、 新叶的共有物为: α-松油烯、 β-胡萝卜素。 β-胡萝卜素及顺香桧烯水合物为首次在互叶白千层中发现。 利用该方法可迅速的确定植株油细胞的主成分, 为互叶白千层精油提取提供有益参考。
Abstract
In order to identify the ingredient in Melaleuca alternifolia oil cells at room temperature, and avoid sample pretreatment and extractions, which can be labour-intensive. Oil Cells Distribution on Different Parts of Melaleuca alternifolia and the principal component in oil cells have been studied by Micro-Raman Spectrometer. It has been found that there are barely any oil cells on the soft branches. There are more oil cells on new leaves compared to mature leaves. In Raman spectroscopy of mature leaf of oil cells, 1 675/726 cm-1(CC stretching/ring deformation) are a characteristic key band of terpinene-4-ol, 1 700/754 cm-1(CC stretching/ ring deformation) for γ-terpinene, 1 609 cm-1(CC stretching)for α- terpinene and 1 522/1 156/1 011 cm-1(CC stretching/C—C stretching/C—C in-plane rocking)for β-carotene. In Raman spectroscopy of new leaves oil cells, 745 cm-1 (ring deformation) is a characteristic key band of cis-sabinene hydrate, 1 609 cm-1 for α- terpinene and 1 522/1 160/1 008 cm-1 for β-carotene. The principal components are different in oil cells of new and mature leaves. It is the first report that there are cis-sabinene hydrate and β-carotene in oil cells of Melaleuca alternifolia. This method can be used for quality control and developmental research for Melaleuca alternifolia plant essential oil extraction.
参考文献

[1] ZHU De-ming, YU Meng-jun, ZHOU Wen-zhao, et al(朱德明, 喻孟君, 周文钊, 等). Chinese Journal of Tropical Crops(热带作物学报), 2005, 26(3): 79.

[2] Homer L E, Leach D N, Lee D, et al. Biochemical Systematics and Ecology, 2000, 28(4): 367.

[3] SI Min-zhen, ZHANG De-qing, LI Lun, et al(司民真, 张德清, 李 伦, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(2): 448.

[4] Baranska M, Schulz H, Kruger H, et al. Anal. Bioanal. Chem., 2005, 381: 1241.

[5] Schulz H, Baranska M. Vibrational Spectroscopy, 2007, 43(1): 13.

司民真, 李家旺, 杨永安, 张德清, 李伦, 张川云. 互叶白千层不同部位油细胞分布及显微拉曼光谱研究[J]. 光谱学与光谱分析, 2021, 41(3): 813. SI Min-zhen, LI Jia-wang, YANG Yong-an, ZHANG De-qing, LI Lun, ZHANG Chuan-yun. Oil Cells Distribution on Different Parts of Melaleuca Alternifolia and Its Research by Micro-Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 813.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!