光谱学与光谱分析, 2021, 41 (4): 1265, 网络出版: 2021-04-12   

基于远程LIBS-Raman光谱的火星矿物成分分析方法研究

Research on Martian Mineral Analysis Based on Remote LIBS-Raman Spectroscopy
袁汝俊 1,2,3,*万雄 1,2,4王泓鹏 1,3
作者单位
1 中国科学院空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院上海技术物理研究所, 上海 200083
4 国科大杭州高等研究院生命与健康科学学院, 浙江 杭州 310024
摘要
实现了一套实验室环境下的LIBS-Raman测试系统的设计, 并验证激光诱导击穿光谱技术(LIBS)和拉曼(Raman)光谱技术在火星模拟环境下矿物样品的综合检测能力。 该系统使用卡塞格林望远镜结构进行远程的LIBS激发, 使用旁路反射光路进行远程脉冲Raman光谱的激发, 其激发光源的波长分别为1 064和532 nm。 之后统一使用卡塞格林望远镜进行二者光谱信号的收集。 为了充分模拟火星表面矿物所处的物理条件, 设计与实现了一套气体腔体, 通过将样品放置在气体舱中, 可以实现对火星表面条件进行最大程度的模拟。 为了验证使用该LIBS-Raman系统进行火星矿物分析的能力, 利用8种典型矿物(孔雀石、 蓝铜矿、 雄黄、 雌黄、 文石、 方解石、 硬石膏和石膏等)样品展开实验分析。 在这些样品中存在巨大的元素和分子成分上的差异, 其中孔雀石、 蓝铜矿分子具有不同的价态和原子比例; 雄黄、 雌黄分子的各原子的个数均不相同; 文石、 方解石虽具有相同的分子式, 但是晶体结构明显不同; 硬石膏和石膏矿物的差异则体现在其分子有无含有结晶水上。 利用LIBS和Raman技术对这些差异性进行研究, 以此来验证在火星条件下使用此组合仪器分析矿物种类和成分的有效性, 并研究激光诱导击穿光谱技术和拉曼光谱技术在物质成分分析中的优缺点。 实验结果表明, 该系统可以在火星条件下有效分析矿物种类和成分。 该对比实验还验证了在分析火星物质中的特定矿物元素组成这一问题上, LIBS技术可快速区分元素种类, 但针对分子信息探测存在明显局限性; Raman光谱技术则可以在一定程度上对这种局限性进行补偿。 二者结合将有效提高极端条件下具有不同分子组成和结构的矿物的识别效能。 该系统的成功验证可为进一步火星探测计划提供有力补充, 并对实验室建立有价值数据库提供帮助。
Abstract
This paper implements the design of a set of LIBS-Raman test systems in a laboratory environment. Based on the system’s LIBS and Raman spectroscopy techniques, it is used to verify the comprehensive detection capabilities of mineral samples in the Martian simulated environment. This system uses the Cassegrain telescope structure for long-range LIBS excitation and the bypass reflection optical path for Raman spectrum excitation. The wavelengths of excitation lasers are 1 064 and 532 nm, respectively. The Cassegrain telescope was then used to collect both spectra. In order to fully simulate the physical conditions of the minerals on the surface of Mars, we have designed a set of gas cavities. By placing samples in the gas chamber, the conditions on the surface of Mars can be simulated to the greatest extent. In order to verify the ability of this LIBS-Raman instrument to analyze Mars minerals, we performed experimental analysis using 8 typical samples (malachite, azurite, realgar, orpiment, aragonite, calcite, anhydrite and gypsum). There are huge differences in elements and molecules in these samples, among which malachite and azurite have molecules with different valence states and atomic ratios; the number of atoms of realgar and orpiment molecules is different; aragonite and calcite have the same molecular formula, but their crystal structures are significantly different; the difference between anhydrite and gypsum mineral is reflected in the presence or absence of crystal water in its molecules. These differences were studied using LIBS and Raman techniques to verify the effectiveness of using this combined instrument to analyze mineral types and components under Martian conditions, and to study the advantages and disadvantages of LIBS and Raman techniques in the analysis of material composition. Experimental results show that the system can effectively analyze mineral species and composition under Martian conditions. This comparative experiment also verified that LIBS could quickly distinguish element types in the analysis of specific mineral elemental composition in Martian material, but there are obvious limitations for molecular information detection; Raman technology can compensate for this limitation to a certain extent. The combination of the two will effectively improve the recognition efficiency of minerals with different molecular composition and structure under extreme conditions. The successful verification of the system can complement the further Mars exploration program and help the laboratory establish a valuable database.
参考文献

[1] Pasquini C, Cortez J, Silva L, et al. Journal of the Brazilian Chemical Society, 2007, 18(3): 463.

[2] Vaskov H. International Journal of Mathematical Models and Methods in Applied Sciences, 2011, 5(7): 1205.

[3] Acosta-Maeda T E, Misra A K, Porter J N, et al. Applied Spectroscopy, 2017, 71(5): 1025.

[4] Grotzinger J P, Crisp J, Vasavada A R, et al. Space Sci. Rev., 2012, 170(1-4): 5.

[5] Williford K H, Farley K A, Stack K M, et al. The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life. From Habitability to Life on Mars. Elsevier. 2018. 275.

[6] Vago J L, Coates A J, Jaumann R, et al. Searching for Traces of Life With the ExoMars Rover. From Habitability to Life on Mars. Elsevier, 2018. 309.

[7] Maurice S, Wiens R C, Saccoccio M, et al. Space Sci. Rev., 2012, 170(1-4): 95.

[8] Wiens R C, Maurice S, Perez F R. Spectroscopy, 2017, 32(5): 50.

[9] Jiang X, Yang B, Li S. Astrodynamics, 2018, 2(1): 1.

[10] Brolly C. The Application of Raman Spectroscopy in Support of the ExoMars 2020 Mission. University of Aberdeen, 2017.

[11] Fau A, Beyssac O, Benzerara K, et al. Effect of LIBS Laser Shots on Mineral Structure and Raman Signature: Preparing for Mars 2020 SuperCam Instrument; Proceedings of the Lunar and Planetary Science Conference, F, 2018.

[12] Misra A K, Acosta-Maeda T E, Porter J N, et al. Applied Spectroscopy, 2019, 73(3): 320.

[13] Kramida A, Ralchenko Y, Reader J. NIST Atomic Spectra Database (ver. 5.3). 2015.

[14] Lafuente B, Downs R T, Yang H, et al. The Power of Databases: the RRUFF Project. Highlights in Mineralogical Crystallography. Walter de Gruyter GmbH, 2016. 1.

[15] Forneris R. American Mineralogist: Journal of Earth and Planetary Materials, 1969, 54(7-8): 1062.

[16] Urmos J, Sharma S, Mackenzie F. American Mineralogist, 1991, 76(3-4): 641.

[17] Sarma L, Prasad P, Ravikumar N. J. Raman Spectrosc., 1998, 29(9): 851.

袁汝俊, 万雄, 王泓鹏. 基于远程LIBS-Raman光谱的火星矿物成分分析方法研究[J]. 光谱学与光谱分析, 2021, 41(4): 1265. YUAN Ru-jun, WAN Xiong, WANG Hong-peng. Research on Martian Mineral Analysis Based on Remote LIBS-Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1265.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!