光谱学与光谱分析, 2021, 41 (4): 1281, 网络出版: 2021-04-12   

NH+4, F-对萤石浮选的影响机理及红外光谱分析

Influence Mechanism and Analysis of Infrared Spectrum of NH+4 and F- on Fluorite Flotation
作者单位
内蒙古科技大学内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室, 内蒙古 包头 014010
摘要
萤石浮选过程中矿浆中的NH+4, F-对萤石的可浮性有重要影响, 而目前关于难免离子对浮选影响的研究主要集中在稳定的阳离子对浮选的活化或抑制作用机理, 而关于不稳定阳离子(NH+4)、 阴离子(F-)影响油酸钠吸附萤石作用机制的研究较少。 因此借助于红外光谱分析, 结合纯矿物浮选、 Zeta电位和溶液化学计算等手段, 研究难免离子(NH+4, F-)对油酸钠浮选萤石的作用机理。 实验结果表明, 在酸性条件下, NH+4对萤石有较强的活化作用, 提高了萤石的回收率, 在pH值为6时, 不同NH+4浓度下, 萤石的回收率均提高到94%左右, 而在碱性条件下, NH+4对萤石的浮选的有一定的抑制作用, 且随着pH值增加, 抑制作用增强, 回收率逐渐下降; 但F-对萤石浮选有一定的抑制作用, 且在pH值为6时, 不同F-浓度的抑制作用均明显增强, 导致萤石回收率降低; 而在碱性条件下, F-对萤石的可浮性影响不大。 其作用机理为阳离子(NH+4)与萤石表面解离到溶液中的F-生成NH4F, 在酸性条件下提高了萤石表面的正电性, 增强萤石表面与油酸的一聚物、 二聚物和分子-离子缔合物的吸附作用, 而在碱性条件下NH+4的水解生成NH3·H2O, 正电性降低, 导致油酸钠在萤石表面的吸附作用减弱; F-抑制萤石表面F-的解离, 从而抑制了油酸根在萤石表面的化学吸附。 红外分析结果表明, 油酸钠在萤石表面发生了化学吸附; NH+4的加入, 在酸性条件下对萤石有很强的活化作用, —CH3, —CH2—和—COO-的特征峰峰位红移, 峰强度加强, 显现出较强的化学吸附作用; 而在碱性条件下, 仅出现了—CH2—的特征峰的峰位红移, 且特征峰强度减弱, 说明NH+4在弱碱条件在萤石表面的化学吸附较弱, 起抑制作用; 当加入F-后只出现了—CH3的反对称伸缩振动峰, 峰位并未发生偏移, 故F-加入后油酸钠在萤石表面并未发生任何基团的化学吸附, 从而抑制了萤石的可浮性。
Abstract
During the flotation process of fluorite, NH+4 and F- in the slurry have important effects on fluorite’s flotability of fluorite. At present, the research about the effects of inevitable cations on floatation mainly focus on the activation or inhibition mechanism of metal cations, but there is less research about the effect of the complex cation (NH+4) and the anion (F-) on the adsorption mechanism of sodium oleate to fluorite. Therefore, the action mechanism of NH+4 and F- on fluorite flotation by sodium oleate is studied in this paper by means of infrared spectroscopy analysis, combined with the flotation experiment of pure fluorite, Zeta potential and solution chemical calculation. The results show that NH+4 has a strong activation effect on fluorite and increases the recovery rate of fluorite under acidic condition, and when the pH value is 6, the recovery of fluorite increased to about 94% at different NH+4 concentrations. However, under alkaline conditions, NH+4 had a certain inhibitory effect on fluorite flotation, and the recovery rate decreased gradually with the increase of pH value. But F- inhibits fluorite to some extent, when the pH value is 6, the inhibitory effect of different F- concentrations is significantly enhanced, resulting in a decrease of fluorite recovery. However, under alkaline conditions, F- has little influence on the flotability of fluorite. The action mechanism is that the adsorption of the cation (NH+4) and F- dissociated from fluorite surface in solution form NH4F under acidic conditions to improve the electropositivity of fluorite surface, and enhance the adsorption between fluorite surface andmonomer, dimer and acidmolecule-ion association of oleic; while under alkaline conditions, the hydrolysis of NH+4 results in the formation of NH3·H2O, which reduces the positive electrical properties and leads to the weakening of the adsorption of sodium oleate on the fluorite surface. F- inhibits the dissociation of F- on fluorite surface, thus inhibiting the chemisorption of oleate acid ion on fluorite surface. FT-IR analysis results show that the chemisorption occurred between sodium oleate and fluorite surface. NH+4 had a strong activation effect on fluorite surface under acidic conditions because the characteristic peaks of —CH3, —CH2—, —COO- are red-shifted and their peak intensity is enhanced, showing a strong chemisorption effect. However, under alkaline conditions, only the characteristic peak of —CH2— appears red shift, and the intensity of the characteristic peak is weakened, indicating that under weak alkali conditions, the chemisorption of NH+4 on the fluorite surface is weak and inhibited the adsorption. When F- is added, only the antisymmetric expansion vibration peak of —CH3 appears and no red shift of the peak position has occurred. Therefore, no chemisorption of any group on the fluorite surface occurs after the addition of F-, which inhibits the flotability of fluorite.
参考文献

[1] Zhang Chenhu, Sun Wei, Hu Yuehua, et al. Journal of Cleaner Production, 2018, 193(5): 228.

[2] Wang Jianjun, Li Wenheng, Zhou Zihan, et al. Chemical Engineering Science, 2020, 214(16): 115369.

[3] ZHANG Bo, LI Jie, ZHANG Xue-feng, et al(张 波, 李 解, 张雪峰, 等). Chinese Journal of Rare Metals(稀有金属), 2016, 40(9): 963.

[4] Jong Kwangsok, Paek Inchol, Kim Yonggwang. Minerals Engineering, 2020, 146: 106017.

[5] WANG Jie-liang, CAO Zhao, WANG Jian-ying, et al(王介良, 曹 钊, 王建英, 等). The Chinese Journal of Nonferrous Metals(中国有色金属学报), 2018, 28(6): 1196.

[6] FU Peng, LI Jie, LI Bao-wei(付 鹏, 李 解, 李保卫). Chinese Journal of Rare Metals(稀有金属), 2017, 41(7): 792.

[7] WANG Zhou-jie, WU Hou-qin, XU Yan-bo, et al. Separation and Purification Technology, 2019, 237: 116387.

[8] WANG Dian-zuo, HU Yue-hua(王淀佐, 胡岳华). Solution Chemitry of Flotation(浮选溶液化学). Changsha: Hunan Science and Technology Press(长沙; 湖南科学技术出版社), 1988. 35.

[9] Zeng Xiaobo, Xu Longhua, Tian Jia. Minerals Engineering, 2017, (111): 201.

[10] WENG Shi-fu, XU Yi-zhuang(翁诗甫, 徐怡庄). Fourier Transform Infrared Spectrum Analysis(傅里叶变换红外光谱分析). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2016. 4.

[11] QI Zong, SUN Chuan-yao(祁 宗, 孙传尧). Journal of China University of Mining & Technology(中国矿业大学学报), 2013, 42(3): 461.

[12] Zheng Renji, Ren Zijie, Gao Huimin. Minerals, 2018, 8(2): 57.

[13] ZHANG Bo, LI Jie, ZHANG Xue-feng(张 波, 李 解, 张雪峰)Chinese Journal of Rare Metals(稀有金属), 2016, 40(9): 963.

林嘉威, 李解, 武靖轩, 李敏, 张文浩. NH+4, F-对萤石浮选的影响机理及红外光谱分析[J]. 光谱学与光谱分析, 2021, 41(4): 1281. LIN Jia-wei, LI Jie, WU Jing-xuan, LI Min, ZHANG Wen-hao. Influence Mechanism and Analysis of Infrared Spectrum of NH+4 and F- on Fluorite Flotation[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1281.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!