光散射学报, 2020, 32 (4): 320, 网络出版: 2021-04-12  

三氧化钨超薄纳米片SERS活性基底的制备与性能研究

Preparation of Tungsten Trioxide Ultrathin Nanosheets for SERS Active Substrate and Its Performance
作者单位
1 安徽工程大学, 安徽芜湖 241000
2 中国科学院合肥物质科学研究院医学物理与技术中心, 安徽合肥 230031
摘要
利用酸辅助一锅法合成了形貌均一的三氧化钨方形纳米片。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外漫反射吸收光谱(UV-DRS)对材料的形貌结构和均一性进行表征。由X射线光电子能谱分析(XPS)与X射线衍射(XRD)对材料中的元素和价态表征可知, 成功制备了三氧化钨纳米片, 并发现其表面具有一定的氧缺陷。将该材料作为表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)基底, 对不同浓度结晶紫(CV)进行了检测, 并经统计计算得到了917 cm-1处特征峰的相对标准偏差(RSD)值为16.13 %, 表明该基底具有较高的重复性。
Abstract
Tungsten trioxide square nanosheets were prepared via acid-assisted one-pot process. Morphology structure and homogeneity of the materials were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and ultraviolet-visible diffuse reflection spectrum (UV-DRS). According to the X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis of the elements and states in the material, the tungsten trioxide nanosheets were successfully prepared and some oxygen defects were found on the surface. Using this material as the surface-enhanced Raman scattering (SERS) substrate, different concentrations of crystal violet (CV) was detected, and the relative standard deviation (RSD) value of 917 cm-1characteristic peak was 16.13%, indicating that the substrate had high repeatability.
参考文献

[1] Fan M,Andrade G,Brolo A. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J].Analytica Chimica Acta 2020, 1097:1-29.

[2] Lombardi J,Birke R.Theory of Surface-Enhanced Raman Scattering in Semiconductors[J].The Journal of Physical Chemistry C 2014, 118(20): 11120-11130.

[3] Langer J, Jimenez A, Aizpurua J, et al. Present and Future of Surface-Enhanced Raman Scattering[J].ACS Nano 2019, 14(1): 28-117.

[4] Besozzi E, Dellasega D, Russo V, et al. Thermomechanical properties of amorphous metallic tungsten-oxygen and tungsten-oxide coatings[J].Materials & Design 2019, 165: 107565.

[5] Xu X L, Yazdi M A, Salut R, et al. Structure, composition and electronic transport properties of tungsten oxide thin film sputter-deposited by the reactive gas pulsing process[J].Materials Chemistry and Physics 2018, 205: 391-400.

[6] Xu X L, Arab P Y, Sanchez J, et al. Reactive co-sputtering of tungsten oxide thin films by glancing angle deposition for gas sensors[J].Materials Today: Proceedings 2019, 6: 314-318.

[7] Liu Q Q, Hu C F, Wang X M. Hydrothermal synthesis of oxygen-deficiency tungsten oxide quantum dots with excellent photochromic reversibility[J].Applied Surface Science 2019, 480: 404-409.

[8] Djaoued Y, Balaji S, Beaudoin N. Sol-gel synthesis of mesoporous WO3-TiO2composite thin films for photochromic devices[J]. Journal of Sol Gel Science & Technology 2013, 65(3): 374-383.

[9] Wang H P, Zhang L, Zhou Y Y, et al. Photocatalytic CO2 reduction over platinum modified hexagonal tungsten oxide: Effects of platinum on forward and back reactions[J]. Applied Catalysis B: Environmental 2020, 263: 118331.

[10] Huang J R, Xu X J, Gu C P, et al. Flower-like and hollow sphere-like WO3 porous nanostructures: Selective synthesis and their photocatalysis property[J]. Materials Research Bulletin 2012.

[11] Zhang G J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry 2012, 22.

[12] Zhang Q X, Xie L L, Zhu Y, et al. Photo-thermochromic properties of oxygen-containing yttrium hydride and tungsten oxide composite films[J].Solar Energy Materials and Solar Cells 2019, 200: 109930.

[13] Popov A, Zholobak N, Balko O, et al. Photo-induced toxicity of tungsten oxide photochromic nanoparticles[J].J Photochem Photobiol B 2018, 178: 395-403.

[14] Szymanska D, Rutkowska I, Adamczyk L, et al. Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene)[J].Journal of Solid State Electrochemistry 2010, 14(11): 2049-2056.

[15] Huang L Z, Luo X Y, Jiang Y K, et al. Oxygen deficiency assisted synthesis of network-like tungsten carbide-carbon nanotubes composites for methanol oxidation[J].Ceramics International 2019, 45(14): 16976-16981.

[16] Gu X K,Samira S;Nikolla E. Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides[J].Chemistry of Materials 2018, 30(9): 2860-2872.

[17] Jiang L, You T T, Yin P G, et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement[J]. Nanoscale, 2013, 5(7):2784.

[18] Cialla D, Petschulat J. Investigation on the Second Part of the Electromagnetic SERS Enhancement and Resulting Fabrication Strategies of Anisotropic Plasmonic Arrays[J].Chemphyschem, 2010, 11(9): 1-3.

[19] Jin L, She G, Wang X, et al. Enhancing the SERS performance of semiconductor nanostructures through a facile surface engineering strategy[J]. Applied Surface Science, 2014, 320:591-595.

[20] Chelibanov V P, Polubotko A M. Main regularities of SERS on semiconductors and dielectrics[J]. Chemical Physics Letters, 2018, 697:23-28.

[21] Huang J, Ma D Y, Chen F, et al. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO3-x Nanostructures for Highly Efficient, Recyclable and Sensitive SERS Sensing[J]. ACS Applied Materials & Interfaces 2017, 9(8):7436-7446.

[22] Zhou Y, Hu X C, Liu X H, et al. Core-shell hierarchical WO2/WO3 microspheres as an electrocatalyst support for methanol electrooxidation[J]. Chemical Communications, 2015, 51.

[23] Bao K Y, Mao W T, Liu G Y, et al. Preparation and electrochemical characterization of ultrathin WO3-x /C nanosheets as anode materials in lithium ion batteries[J]. Nano Research 2016, 10(6): 1903-1911.

[24] Tong M, Yang J, Jin Q, et al. Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation[J]. Journal of Materials Science, 2019.

[25] Zhang B, Yin X H, Zhen D S, et al. Au nanoparticle-modified WO3 nanoflowers/TiO2 nanotubes used for the SERS detection of dyes[J]. New Journal of Chemistry 2017, 41(22):13968-13973.

[26] Witham H. Effect of preparation conditions on the morphology and electrochromic properties of amorphous tungsten oxide films[J].Journal of Vacuum Science & Technology A Vacuum Surfaces & Films 2003, 11(4):1881.

[27] Yao Z J, Di J T, Yong Z Z, et al. Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film[J].Chemical Communications 2012, 48(66):8252.

[28] Wei W X,Huang Q L. Preparation of cellophane-based substrate and its SERS performance on the detection of CV and acetamiprid[J].Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 2017, 193: 8-13.

孙宗杰, 林东岳, 何遥, 孙宇峰, 杨良保. 三氧化钨超薄纳米片SERS活性基底的制备与性能研究[J]. 光散射学报, 2020, 32(4): 320. SUN Zongjie, LIN Dongyue, HE Yao, SUN Yufeng, YANG Liangbao. Preparation of Tungsten Trioxide Ultrathin Nanosheets for SERS Active Substrate and Its Performance[J]. The Journal of Light Scattering, 2020, 32(4): 320.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!