光通信技术, 2020, 44 (2): 14, 网络出版: 2020-04-05   

基于载波抑制单边带调制的微波光子混频方案

Microwave photonic mixing scheme based on carrier-suppression single sideband modulation
作者单位
上海卫星工程研究所, 上海 201109
摘要
为了克服电混频器的瓶颈, 实现大带宽的信号混频, 提出了一种基于双偏振双平行马赫-曾德尔调制器的微波光子混频方案。通过调节调制器的6个直流偏置电压进行载波抑制单边带调制, 射频(RF)信号和本振(LO)信号分别注入调制器, 相互隔离, 各自调制, 且在2个相互正交的偏振态上传输, 最后经偏振控制器和检偏器调整到同一偏振态上进行拍频, 上、下变频模式的切换只需要改变其中一个直流偏置电压。仿真与实验表明: 该方案切实可行, 输入的RF频率在11~25 GHz时, 输出的上变频或下变频信号的RF杂散抑制比不低于25 dB, 频谱纯度高, 可调谐性好, 变频模式之间切换方便, 系统的RF/LO隔离度达到-49 dB。
Abstract
In order to overcome the bottleneck of electric mixer and achieve wide bandwidth signal mixing, a microwave photonic mixing scheme based on dual polarization double parallel Mach-Zehnder modulator is proposed. Carrier suppression single sideband modulation is achieved by adjusting six direct-currentbias voltages. Radio frequency(RF) and Local oscillator(LO) signals are injected into modulators separately, separated from each other and modulated separately. They are transmitted on two orthogonal polarization states. Finally, both of them are adjusted to the same polarization state by polarization controller and polarizerto beat the frequency. The switching of up-conversion and down-conversion only needs to change one of the direct-current bias voltages. The simulation and experiment results show that the scheme is feasible. When the RF frequency ranges from 11 GHz to 25 GHz, the RF spurious rejection ratio of the up-converted or down-converted signals output by the scheme is no less than 25 dB, and the spectrum purity is high and the tunability is good. The switching between the frequency conversion modes is convenient, the RF/LO isolation of the system reaches -49 dB.
参考文献

[1] 洪赞扬, 王天亮, 陈阳, 等. 基于微波光子的无光滤波16倍频信号生成方案[J]. 光通信技术, 2018, 42(10): 14-17.

[2] 李海鸥, 李思敏, 陈明, 等. 微波光子技术的研究进展[J]. 光通信技术, 2011, 35(8): 24-28.

[3] 董雪莹, 徐恩明, 李凡, 等. 基于相位调制的线性化微波光子链路[J]. 光通信技术, 2018, 42(2): 55-58.

[4] HRAIMEL B, ZHANG X, PEI Y, et al. Optical Single-Sideband Modulation With Tunable Optical Carrier to Sideband Ratio in Radio Over Fiber Systems[J]. Journal of Lightwave Technology, 2011, 29(5): 775-781.

[5] 陈阳, 刘波, 王天亮, 等. 星上高性能集中式本振信号光学研究[J]. 上海航天, 2016, 33(6): 38-43.

[6] YAO J P. Microwave Photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.

[7] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

[8] MINASIAN R A, CHAN E H W, YI X. Microwave photonic signal processing[J]. Optics Express, 2013, 21(19): 22918-22936.

[9] WANG X D, ZHANG J L, CHAN E H W, et al. Ultra-wide bandwidth photonic microwave phase shifter with amplitude control function[J]. Optics Express, 2017, 25(3): 2883-2894.

[10] GOPALAKRISHNAN G K, BURNS W K, BULMER C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(12): 2383-2391.

[11] DONGHUN P, PAGAN V R, CHO P S, et al. RF photonic downconversion of vector modulated signals based on a millimeter-wave coupled electrooptic nonlinear polymer phase-modulator[J]. Optics Express, 2017, 25(24): 29885-29895.

[12] JIANG T, YU S, XIE Q, et al. Photonic downconversion based on optical carrier bidirectional reusing in a phase modulator[J]. Optics Letters, 2014, 39(17): 4990-4993.

[13] CHAN E H W, MINASIAN R A. High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique[J]. Optics letters, 2013, 38(24): 5292-5295.

[14] VIDAL R B. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling[J]. Optics Letters, 2012, 37(24): 5055-5057.

[15] PAGAN V R, MURPHY T E. Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering[J]. Optics Letters, 2015, 40(11): 2481-2484.

[16] PAGAN V R, HAAS B M, MURPHY T E, et al. Linearized electro-optic microwave downconversion using phase modulation and optical filtering[J]. Optics Express, 2011, 19(2): 883-895.

[17] HUANG L, LI R, CHEN D, et al. Photonic Downconversion of RF Signals With Improved Conversion Efficiency and SFDR[J]. IEEE Photonics Technology Letters, 2016, 28(8): 880-883.

[18] CHAN E H W, MINASIAN R A. Microwave Photonic Downconverter With High Conversion Efficiency[J]. Journal of Lightwave Technology, 2012, 30(23): 3580-3585.

[19] TANG Zh Zh, ZHANG F Zh, PANSh L. Photonic microwave downconverter based on an optoelectronic oscillator using a single dual-drive Mach-Zehnder modulator[J]. Optics Express, 2014, 22(1): 305-310.

[20] TANG Zh Zh, PAN Sh L. A Filter-Free Photonic Microwave Single Sideband Mixer[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 67-69.

[21] HRAIMEL B, ZHANG X, PEI Y, et al. Optical Single-Sideband Modulation With Tunable Optical Carrier to Sideband Ratio in Radio Over Fiber Systems[J]. Journal of Lightwave Technology, 2011, 29(5): 775-781.

张舟, 王天亮, 朱维. 基于载波抑制单边带调制的微波光子混频方案[J]. 光通信技术, 2020, 44(2): 14. ZHANG Zhou, WANG Tianliang, ZHU Wei. Microwave photonic mixing scheme based on carrier-suppression single sideband modulation[J]. Optical Communication Technology, 2020, 44(2): 14.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!