光通信研究, 2020 (5): 37, 网络出版: 2021-04-17  

高灵敏光子晶体光纤温度传感器的特性分析

Characteristic Analysis of Highly Sensitive Photonic Crystal Fiber Temperature Sensor
作者单位
湖北汽车工业学院 理学院, 湖北 十堰 442002
摘要
针对填充液体的光子晶体光纤温度传感器灵敏度较低的问题, 文章提出了一种基于模式耦合的高灵敏光子晶体光纤温度传感器, 光子晶体光纤的纤芯作为传光通道, 填充液态乙醇和氯仿的液芯作为耦合通道, 当纤芯与液芯发生模式耦合时, 纤芯的限制损耗谱会出现一个狭窄的损耗尖峰。损耗峰的位置随温度的变化而漂移。光子晶体光纤的纤芯和液芯相互独立, 可以分别调整其传输特性。利用有限差分算法对传感器的特性进行了仿真研究, 结果表明, 设计的光纤结构具有良好的温度传感特性, 耦合波长随温度升高而红移, 在10~35 ℃范围内, 温度检测灵敏度最高可达44.16 nm/℃, 光纤结构参数的变化对灵敏度影响较小。
Abstract
Aiming at the problem of low sensitivity of liquid-filled photonic crystal fiber temperature sensor, a high-sensitivity photonic crystal fiber temperature sensor based on mode-coupling principle is proposed. We use the core of photonic crystal fiber as the light transmission channel and the liquid core filled with ethanol and chloroform as the coupling channel. When the mode coupling occurs between the fiber core and liquid core, a narrow high loss peak is formed in the confinement loss spectrum. The position of the loss peak shifts with the change of temperature. Because the core and the liquid core of the photonic crystal fiber are independent of each other, their transmission characteristics can be adjusted respectively. The properties of this sensor are analyzed by the finite difference method. Results show that the designed optical fiber structure has good temperature sensing characteristics, and the coupling wavelength is red-shift with the increase of temperature. The maximum sensitivity of temperature detection is up to 44.16 nm/℃ between 10℃ and 35℃, and the influence of fiber structure parameters on the sensitivity is not obvious.
参考文献

[1] 李学金, 于永芹, 洪学明, 等. 基于液体填充的光子晶体光纤温度传感特性分析[J].中国激光,2009,36(5):1140-1144.

[2] Ma J,Yu H H,Jiang X,et al.High-performance Temperature Sensing Using A Selectively Filled Solid-core Photonic Crystal Fiber with A Central Air-bore[J]. Optics Express, 2017, 25(8): 9406-9415

[3] Rabee A S H, Hameed M F O, Heikal A M, et al. Highly Sensitive Photonic Crystal Fiber Gas Sensor[J]. Optik, 2019, 188:78-86.

[4] 黄国家, 彭志清, 杨晓占, 等. 基于纳米铜/石墨烯包覆光子晶体光纤的硫化氢气体传感性能研究[J]. 光子学报, 2019, 48(3): 306001.

[5] Yu Y Q, Li X J, Hong X M, et al. Some Features of the Photonic Crystal Fiber Temperature Sensor with Liquid Ethanol Filling[J].Optics Express,2010,18(15):15383-15388.

[6] Ayyanar N, Raja R V J, Vigneswaran D, et al. Highly Efficient Compact Temperature Sensor Using Liquid Infiltrated Asymmetric Dual Elliptical Core Photonic Crystal Fiber[J]. Optical Materials, 2017, 64:574-582.

[7] Liu H, Chen C C, Wang H R, et al. Simultaneous Measurement of Magnetic Field and Temperature based on Surface Plasmon Resonance in Twin-core Photonic Crystal Fiber[J].Optik,2020,203:164007.

[8] Liu Y D, Jing X L, Li S G, et al. High-sensitivity Plasmonic Temperature Sensor based on Gold-coated D-shaped Photonic Crystal Fiber[J]. Applied Optics, 2019, 58(18):5115-5121.

[9] Han B, Zhou F D, Chen M, et al. Design of Highly-sensitive Fiber Thermal Anemometer based on Reflective Photonic Crystal Fiber Loop Mirror[J]. Optical Fiber Technology, 2020, 54:102114.

[10] Sani E, Dell'oro A. Spectral Optical Constants of Ethanol and Isopropanol from Ultraviolet to Far Infrared[J]. Optical Materials, 2016, 60: 137-141.

[11] Kedenburg S, Vieweg M, Gissibl T, et al. Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-infrared Spectral Region[J]. Optical Materials Express, 2012, 2(11):1588-1611.

[12] 任国斌, 王智, 娄淑琴, 等. 光子晶体光纤的有效面积[J]. 电子学报, 2004, 32(5): 723-726.

[13] 杨勋恩, 黄勇林, 任珂, 等. 基于光子晶体光纤的MZI温度传感特性研究[J]. 光通信研究, 2017(3): 24-28.

[14] 王睛, 丁毅, 谭策, 等. 液体填充光子晶体光纤长周期光栅双谐振温度传感器的设计与优化[J]. 量子光学学报, 2018, 24(1): 84-92.

曾维友, 王晴岚, 徐利. 高灵敏光子晶体光纤温度传感器的特性分析[J]. 光通信研究, 2020, 46(5): 37. ZENG Wei-you, WANG Qing-lan, XU Li. Characteristic Analysis of Highly Sensitive Photonic Crystal Fiber Temperature Sensor[J]. Study On Optical Communications, 2020, 46(5): 37.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!