光学 精密工程, 2019, 27 (5): 1103, 网络出版: 2019-09-02   

压电驱动的超声悬浮精密轴承静动态承载特性

Static and dynamic load capacity of piezoelectric actuated ultrasonic levitation precision bearing
作者单位
大连交通大学 机械工程学院, 辽宁 大连 116028
摘要
为研究超声悬浮轴承的静、动态承载特性, 设计了一种压电陶瓷驱动的全包围结构超声悬浮轴承。分析了气体挤压膜润滑承载机理,在等温隔热条件下, 根据牛顿流体的气体动力学理论, 建立了描述轴承启动阶段及支撑回转体稳定旋转阶段气膜压力的静、动态雷诺方程。采用有限差分法并利用MATLAB自定义函数的功能, 对超声悬浮轴承的静态及动态承载力进行了数值计算。为验证理论计算的正确性, 通过轴承样机自悬浮实验验证轴承悬浮特性的理论计算结果, 得出在其谐振频率下, 相同结构尺寸及悬浮参数的轴承静态承载力理论计算值与测量值之间的误差为8.33%; 在挤压数为100, 2~5 μm合理初始间隙下, 动态悬浮力理论计算值与实验测量值相吻合。考虑样机结构特性引起的能量转换误差及实验环境因素影响, 误差在合理允许范围之内, 验证了理论分析及计算的正确性,对超声悬浮轴承的理论研究及设计具有一定的指导意义。
Abstract
An ultrasonic levitation bearing based on piezoelectric actuation is designed to study the static and dynamic capacities of an ultrasonic levitation bearing. In this paper, calculations and numerical simulations of the levitation force of a gas squeeze film bearing were done using the finite difference method and a MATLAB function to calculate discrete equations for numerical calculations. The Reynolds equation describing the pressure distribution of the gas film was established for the bearing′s start-up and stable operation, according to the theory of gas dynamics of a Newtonian fluid, under the conditions of isothermality and adiabatic process and based on lubrication and load mechanism of a gas squeeze film. In addition, a bearing prototype was fabricated to measure the bearing capacity. For the resonant frequency, there is a difference of 8.33% between the theoretical value and the experimental result for the same size and levitation parameters. For the dynamic levitation force, the measurement results agree well with the solution of the theoretical calculations when the squeeze number is 100 and the initial gap is between 2-5 μm. Studying the impact of electro-mechanical conversion and the experimental environment provide a basis for future ultrasonic levitation theory research and design.
参考文献

[1] 赵晓龙, 张君安,董皓, 等.变截面节流器对空气静压轴承承载性能的影响[J].光学 精密工程, 2018,26(10):2446-2454.

    ZHAO X L, ZHANG J A, DONG H, et al.. Influence of variable section throttle on performance of aerostatic bearings[J]. Opt. Precision Eng., 2018,26(10):2446-2454. (in Chinese)

[2] 李一飞,尹益辉. 小孔节流静压支承轴承力学性能的数值建模[J].光学 精密工程,2017, 25(2):417-424.

    LI Y F, YIN Y H. Numerical modeling of mechanical performances of aerostatic bearing with orifice-type restrictor[J]. Opt. Precision Eng., 2017,25(2):417-424. (in Chinese)

[3] HU J H, NAKAMURA K, UEHA S. A noncontact ultrasonic motor with the rotor levitated by axial acoustic viscous force[J]. Proceedings of Ultrasonic World Congress, 1997,24-27:434-435.

[4] ZHAO S, MOJRRZISCH S, WALLASCHEK J. An ultrasonic levitation journal bearing able to control spindle center position[J]. Mechanical Systems and Signal Processing, 2012, 36(1): 168-181.

[5] ZHAO S, TWIEFEL J, WALLASCHEK J. Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing[J]. SPIE, 2009, 7288:72881G

[6] SALBU E Q J. Compressible squeeze films and squeeze bearings[J]. Journal of Basic Engineering, 1964(6):355-364.

[7] ONO Y,YOSHIMOT S, MIYATAKE M. Impulse-load dynamics of squeeze film gas bearings for a linear motion guide[J]. Journal of Tribology, 2009,131:1-6.

[8] YAO D L, FU X L. Aerodynamic analysis of circular plate-shaped and circular ring-shaped squeeze film bearings[J]. Mathematics and Mechanics English edition, 1990,8(12):759-766.

[9] 田丰君,车小红,杨志刚, 等.双向支撑超声波悬浮轴承的设计[J]. 光学 精密工程,2009,17(4):814-817.

    TIAN F J, CHE X H, YANG ZH G, et al.. Structure design bidirectional support ultrasonic levitation bearing[J]. Opt. Precision Eng.,2009,17(4):814-817 (in Chinese)

[10] 彭太江, 杨志刚, 田丰君,等. 轴系超声波悬浮支撑技术研究[J].光学 精密工程, 2008,16(10):1895-1900.

    PENG T J, YANG ZH G, TIAN F J, et al.. Investigation on ultrasonic leviative support to high speed axis in fly wheel[J].Opt. Precision Eng.,2008,16(10):1895-1900. (in Chinese)

[11] 宋昀光, 孙晓东, 范尊强,等. 超声悬浮轴承系统振幅衰减自抗扰控制[J]. 吉林大学学报, 2015,33(1):26-32.

    SONG Y G, SUN X D, FAN Z Q, et al.. Active disturbance rejection control for amplitude decay of ultrasonic levitation bearing systems[J]. Journal of Jilin University, 2015, 33(1):26-32. (in Chinese)

[12] 魏剑宇.超声波近场悬浮稳定性及悬浮高度研究[D] .大连:大连理工大学, 2015:31-37.

    WEI J Y. Study of Levitated Stability and Height in Near Field Acoustic Levitation[D]. Dalian: Dalian University of Technology, 2015:31-37. (in Chinese)

[13] 景敏卿, 刘恒, 沈园.新型挤压膜气体轴承的研究[J].西安交通大学学报, 2008,42(7):799-802.

    JING M Q, LIU H, SHEN Y. New study squeeze film air bearing[J]. Journal of Xi′an Jiaotong University, 2008,42(7):799-802. (in Chinese)

[14] 朱达云.超声激励的气体挤压膜直线导轨及其控制器的研究[D].南京:南京航空航天大学, 2012:31-33.

    ZHU D Y. Analysis on Gas Squeeze-film Linear Guide using Ultrasonic Vibrations and its Controller[D].Nanjing: Nanjing University of Aerospace and Astromomy, 2012:31-33.(in Chinese)

[15] 李新波, 王英伟,等.凹球面双发射极超声阵列悬浮能力研究[J]. 西安交通大学报, 2018,11:64-66.

    LI X B, WANG Y W, et al.. Ultrasonic array levitation capacity of concave spherical surface double emitter[J]. Journal of Xi′an Jiaotong University,2018,11:64-66. (in Chinese)

[16] 王洪臣, 杨志刚,刘磊, 等.基于轴向支撑超声波悬浮高速电机的研究[J]. 压电与声光, 2015,37(5):33-35.

    WANG H CH, YANG ZH G, LIU L, et al.. Based on axial support study on ultrasonic levitation high-speed motor[J]. Piezoelectrics and Acoustooptics, 2015,37(5): 33-35. (in Chinese)

[17] 李东明, 崔爽,丛琳皓, 等.超声波轴承用挤压式压电换能器的共振频率[J] .光学 精密工程, 2014, 22(9):2424-2429.

    LI D M, CUI SH, CONG L H,et al.. Resonance frequency of extrusion type piezoelectric transducer ultrasonic bearing[J]. Opt. Precision Eng.,2014,22(9):2424-2429. (in Chinese)

贾颖, 李东明, 赵玉龙, 崔云先, 费继友. 压电驱动的超声悬浮精密轴承静动态承载特性[J]. 光学 精密工程, 2019, 27(5): 1103. JIA Ying, LI Dong-ming, ZHAO Yu-long, CUI Yun-xian, FEI Ji-you. Static and dynamic load capacity of piezoelectric actuated ultrasonic levitation precision bearing[J]. Optics and Precision Engineering, 2019, 27(5): 1103.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!