光学学报, 2007, 27 (4): 598, 网络出版: 2007-04-25   

稀土掺杂固体发光材料的光谱分析

Spectral Analyses of Rare-Earth Ions in Solid Luminescent Materials
作者单位
中国科学院上海硅酸盐研究所, 上海 200050
摘要
光谱分析是评价稀土发光材料光谱性质的主要依据,Judd-Ofelt(J-O)理论是光谱分析的基础。详述了采用J-O模型拟合三个强度参量和估算一些重要辐射参量的操作细节,讨论了相关公式的合理应用,总结了计算中误差的主要来源,并推荐了一种通过低温实验获得较可靠光谱参量的途径。建议采用透射光谱数据计算实验跃迁振子强度,吸收系数和吸收截面的计算应该扣除光反射、散射和基质本身吸收的影响,平均波数和平均波长的取值须考虑线形因子。并建议通过发射光谱的实测线形计算各波长的发射截面。由于J-O模型涉及许多近似和假设,计算结果误差较大,可能导致结果不可靠。通过分析指出,采用低温下测得的能级寿命和荧光分支比进行相关参量的估算可获得较可靠、较有意义的结果。
Abstract
Spectral analyses are the basis of estimating spectroscopic properties of rare-earth ions doped materials and Judd-Ofelt (J-O) theory is considered the foundation of spectral analyses. The process calculating three intensity parameters according to J-O model and some important radiative parameters are detailed; the reasonable applications of related formulas are discussed; the originations of errors in calculations are summarized, and a different approach is recommended to obtain more reliable radiative parameters. Experimental oscillator strengths are suggested to be calculated by transmission spectra. The light reflection, scattering and the inherent absorption of matrix should be subtracted in absorption coefficient and cross-section calculations. The line shape factor must be taken into account for determining the average wavenumber and wavelength. The line shape of measured emission spectrum is proposed to be considered for calculating emission cross-sections at different wavelength. However, the errors are usually relatively high, even leading to unreliable results, because many approximations and assumptions were involved in J-O model. It is put forward that if measured radiative lifetimes and branching ratios at low temperature are used to calculate parameters, obtained results will be more reliable and meaningful.
参考文献

[1] . H. Van Vleck. The puzzle of rare-earth spectra in solids[J]. J. Phys. Chem., 1937, 41(1): 67-80.

[2] . P. M. Woudenberg. The absorption of praseodymium in solutions[J]. Physica, 1942, 9(2): 217-224.

[3] . Hoogschagen, A. P. Snoek, C. J. Gorter. The absorption of light in aqueous solutions of neodymium salts[J]. Physica, 1943, 10(8): 693-698.

[4] . Hoogschagen, T. G. Scholte, S. Kruyer. The absorption of light in aqueous solutions of dysprosium, holmium and thulium salts[J]. Physica, 1946, 11(6): 504-512.

[5] . Hoogschagen. The light absorption in the near infra red region of praseodymium, samarium and ytterbium solutions[J]. Physica, 1946, 11(6): 513-517.

[6] . Hoogschagen, A. P. Snoek, C. J. Gorter. The absorption of light by neodymium salts in the near ultra-violet region[J]. Physica, 1946, 11(6): 518-520.

[7] . R. Judd. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3): 750-761.

[8] . S. Ofelt. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys., 1962, 37(3): 511-520.

[9] . D. Peacock. The intensities of Lanthanide ff transitions[J]. Structure and Bonding, 1975, 22: 83-122.

[10] . Reisfeld. Radiative and non-radiative transitions of rare-earth ions in glasses[J]. Structure and Bonding, 1975, 22: 123-175.

[11] . Luminescence studies of Er3+ ions in fluoride, fluorophosphate and phosphate glasses[J]. Acta Physica Sinica, 1985, 34(12): 1582-1594.

[12] Zhang Siyuan, Bi Xianzhang. Spectral Theory of Rare Earth[M]. Changchun: Jilin Science and Technology Press, 1991. 155~186 (in Chinese)
张思远,毕宪章. 稀土光谱理论[M]. 长春: 吉林科学技术出版社, 1991. 155~186

[13] . S. Quimby, W. J. Miniscalco. Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass[J]. J. Appl. Phys., 1994, 75(1): 613-615.

[14] . Goldner, F. Auzel. Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass[J]. J. Appl. Phys., 1996, 79(10): 7972-7977.

[15] . Babu, C. K. Jayasankar. Spectroscopy of Pr3+ ions in lithium borate and lithium fluoroborate glasses[J]. Physica B, 2001, 301(3): 326-340.

[16] Zhang Qingli, He Wei, Sun Dunlu et al.. Judd-Ofelt spectral theory[J]. Spectroscopy and Spectral Analysis, 2005, 25(3): 329~333 (in Chinese)
张庆礼,何伟,孙敦陆 等. Judd-Ofelt 光谱分析理论[J]. 光谱学与光谱分析, 2005, 25(3): 329~333

[17] . T. Carnall, P. R. Fields, K. Rajnak. Spectral intensity of the trivalent lanthanides and actinides in solution[J]. J. Chem. Phys., 1968, 49(10): 4412-4423.

[18] . Seeber, E. A. Downing, L. Hesselink et al.. Pr3+-doped fluoride glasses[J]. J. Non-Crystal. Solids, 1995, 189(3): 218-226.

[19] . G. S. Filho, J. M. Filho, F. E. A. Melo et al.. Optical properties of Sm3+ doped lead fluoroborate glasses[J]. J. Phys. Chem. Solids, 2000, 61(9): 1535-1542.

[20] Yang Jianhu, Dai Shixun, Hu Lili et al.. Spectroscopic properties of Er3+ and Yb3+ codoped tellurite glasses [J]. Acta Optica Sinica, 2003, 23(2): 210~215 (in Chinese)
杨建虎,戴世勋,胡丽丽 等. Er3+和Yb3+共掺碲酸盐玻璃的光谱性质[J]. 光学学报, 2003, 23(2): 210~215

[21] . . Growth, structure and spectral properties of Yb3+-doped KY(WO4)2 laser crystal[J]. Acta Physica Sinica, 2006, 55(6): 3141-3146.

[22] Song Feng, Guo Hongcang, Zhang Wanlin et al.. Calculation of spectroscopic properties of Tm∶YVO4 crystals[J]. Spectroscopy and Spectral Analysis, 2002, 22(1): 1~4 (in Chinese)
宋峰,郭红沧,张万林 等. Tm∶YVO4晶体的光谱参量计算[J]. 光谱学与光谱分析, 2002, 22(1): 1~4

[23] . L. Adam, M. Matechi, H. L. Helgoualch et al.. Non-radiative emissions in Er3+-doped chloro-fluoride glasses[J]. Eur. J. Solid State Inorg. Chem., 1994, 31(4): 337-349.

[24] A. A. KaminskⅡ,. Crystalline Lasers: Physical Processes and Operation Schemes[M]. Boca Raton, New York, London and Tokyo: CRC Press, 1996. 100~202

[25] . T. Carnall, P. R. Fields, K. Rajnak. Electronic energy levels in the trivalent lanthanide aquo ions Ⅰ. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys., 1968, 49(10): 4424-4442.

[26] . T. Carnall, P. R. Fields, K. Rajnak. Electronic energy levels of the trivalent lanthanide aquo ions Ⅱ. Gd3+[J]. J. Chem. Phys., 1968, 49(10): 4443-4446.

[27] . T. Carnall, P. R. Fields, K. Rajnak. Electronic energy levels of the trivalent lanthanide aquo ions Ⅲ. Tb3+[J]. J. Chem. Phys., 1968, 49(10): 4447-4449.

[28] . T. Carnall, P.R. Fields, K. Rajnak. Electronic energy levels of the trivalent lanthanide aquo ions Ⅳ. Eu3+[J]. J. Chem. Phys., 1968, 49(10): 4450-4455.

[29] Luo Zundu, Huang Yidong. Spectroscopic Physics of Solid Laser Material[M]. Fuzhou: Fujian Press of Science and Technology, 2003. 55~77 (in Chinese)
罗遵度,黄艺东. 固体激光材料光谱物理学[M]. 福州: 福建科学技术出版社,2003. 55~77

[30] . J. F. Broer, C. J. Gorter, J. Hoogschagen. On the intensities and the multipole character in the spectra of the rare earth ions[J]. Physica, 1945, 11(4): 231-250.

[31] H. Inoue, K. Soga, A. Makishima. The effects of crystal-fields on the optical properties of Pr: ZBLAN glass[J]. J. Non-Cryst. Solids, 2003, 325(1~3): 282~294

[32] . Dy3+-doped selenide glasses for 1.3 μm optical fiber amplifiers[J]. J. Mater. Res., 2005, 20(9): 2597-2602.

[33] Yang Zhiyong, Chen Wei, Luo Lan. Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3 μm optical fiber amplifiers[J]. J. Non-Crystal. Solids, 2005, 351(30~32): 2513~2518

[34] . 1.23 μm and 1.47 μm emissions from Tm3+ in chalcogenide glasses[J]. J. Appl. Phys., 2006, 99(7): 076107-1.

[35] . B. Shin, J. Heo, H. S. Kim. Enhancement of the 1.3-μm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides[J]. J. Mater. Res., 2001, 16(5): 1318-1324.

[36] . W. Hewak, B. N. Samson, J. A. M. Neto et al.. Emission at 1.3 μm from dysprosium-doped Ga∶La∶S glass[J]. Electron. Lett., 1994, 30(12): 968-970.

[37] . Dussardier, D. W. Hewak, B. N. Samson et al.. Pr3+-doped Cs∶Ga∶S∶Cl glass for efficient 1.3 μm optical fiber amplifier[J]. Electron. Lett., 1995, 31(3): 206-208.

[38] . Suzuki, Y. Ohishi. Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass[J]. Appl. Phys. Lett., 2004, 84(19): 3804-3806.

[39] . Saissy, N. Azami, J. Jones. Properties of Sm3+ ions in fluorozirconate fiber[J]. Appl. Opt., 1997, 36(24): 5931-5933.

[40] Dai Shixun, Hu Lili, Liu Zhuping et al.. Spectrum and laser properties of ytterbium doped phosphate glass at low temperature[J]. Acta Optica Sinica, 2002, 22(5): 627~631 (in Chinese)
戴世勋,胡丽丽,柳祝平 等. 低温下掺镱磷酸盐激光玻璃的光谱和激光特性[J]. 光学学报, 2002, 22(5): 627~631

杨志勇, 罗澜, 陈玮. 稀土掺杂固体发光材料的光谱分析[J]. 光学学报, 2007, 27(4): 598. 杨志勇, 罗澜, 陈玮. Spectral Analyses of Rare-Earth Ions in Solid Luminescent Materials[J]. Acta Optica Sinica, 2007, 27(4): 598.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!