光学学报, 2008, 28 (4): 783, 网络出版: 2008-04-21   

一种具有声低通滤波特性的无源零差光纤水听器

A Novel Passive Homodyne Fiber-Optic Hydrophone of Acoustic Low-Pass Filtering
作者单位
国防科技大学光电科学与工程学院, 湖南 长沙 410073
摘要
报道了一种新颖的具有抗混叠功能的无源零差迈克耳孙型光纤水听器。它由一个普通的芯轴型光纤水听器和一个圆柱型亥姆霍兹共振器构成。在驻波罐中对其声压相位灵敏度频响进行了测量,结果表明该光纤水听器具有较好的声低通滤波特性,能有效地抑制声信号中的高频成分,从而实现抗混叠滤波。该光纤水听器的低频声压相位灵敏度主要由传感光纤长度和弹性增敏层的物理特性决定,约为-159 dB (0 dB=1 rad/μPa)。在1150 Hz附近出现了一个共振峰,这主要由圆柱型亥姆霍兹共振器的声学特性决定。1150~2280 Hz频段内的灵敏度衰减率约为50 dB/倍频程,1500 Hz以后的灵敏度衰减量大于10 dB。这对于提高我国未来声纳系统的抗干扰能力具有十分重要的意义。
Abstract
A novel passive homodyne Michelson interferometric fiber-optic hydrophone of anti-aliasing has been manufactured and demonstrated. This new fiber-optic hydrophone consists of a conventional mandrel fiber-optic hydrophone and a metal cylindrical Helmholtz resonator. The acoustic pressure phase sensitivity response has been measured in a standing-wave tube filled with water. Experimental results show that this new fiber-optic hydrophone is of acoustic low-pass filtering, which makes it available for suppressing high-frequency components in acoustic signal and eliminating aliasing in the future sonar system. The low frequency sensitivity of this fiber-optic hydrophone, as determined by the length of the sensing fiber and the performance of the elastic layer, is -159 dB (0 dB=1 rad/μPa). The frequency response has a resonance peak near 1150 Hz, which is determined by the cylindrical Helmholtz resonator. There is a measured roll-off of 50 dB/octave over the range of 1150~2280 Hz. The acoustic sensitivity attenuation beyond 1500 Hz is bigger than 10 dB. This new fiber-optic hydrophone is very important for enhancing the operation performance of the future sonar system.
参考文献

[1] . H. Cole, R. L. Johnson, P. G. Bhuta. Fiber-optic detection of sound[J]. J. Acoust. Soc. Am., 1977, 62(5): 1136-1138.

[2] . A. Bucaro, H. D. Dardy, E. F. Carome. Fiber optic hydrophone[J]. J. Acoust. Soc. Amer., 1977, 62(5): 1302-1304.

[3] . Nash. Review of interferometric opical fiber hydrophone technology[J]. IEE Proc. Rador Sonar Navig., 1996, 143(3): 204-208.

[4] . A. Cranch, P. J. Nash, C. K. Kirkendall. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors J., 2003, 3(1): 19-30.

[5] A. Dandridge, A. B. Tveten, T. G. Giallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE J. Quant. Electron., 1982, QE-18(10): 1647~1653

[6] . A. Cranch, C. K. Kirkendall, K. Daley et al.. Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array[J]. IEEE Photon. Technol. Lett., 2003, 15(11): 1579-1581.

[7] Meng Zhou, Hu Yongming, Xiong Shuidong et al.. All polarization maintaining fiber hydrophone array[J]. Chin. J. Lasers, 2002, A29(5): 415~417
孟洲,胡永明,熊水东 等. 全保偏光纤水听器阵列[J]. 中国激光, 2002, A29(5): 415~417

[8] Kang Chong, Huang Zongjun, Tong Chengguo et al.. Operating point stabilization of Fabry-Pérot optical fiber hydrophone based on Fourier transform spectrum[J]. Acta Optic Sinica, 2007, 27(7): 1156~1160
康崇,黄宗军,佟成国 等. 用傅里叶变换谱稳定法布里-珀罗型光纤水听器的工作点[J]. 光学学报, 2007, 27(7): 1156~1160

[9] Song Zhangqi, Wang Xin, Cao Chunyan et al.. Fiber-optic hydrophone based on Sagnac interferometer with saw-tooth wave phase biasing technique[J]. Chin. J. Lasers, 2007, 34(7): 957~961
宋章启,王鑫,曹春艳 等. Sagnac光纤水听器锯齿波相位偏置技术[J]. 中国激光, 2007, 34(7): 957~961

[10] . D. Kersey, M. A. Davis, H. J. Patrick et al.. Fiber grating sensors[J]. J. Lightwave Technol., 1997, 15(8): 1442-1449.

[11] J. B. Carroll, D. R. Huber. A fiber-optic hydrophone with a mechanical anti-aliasing filter[J]. J. Lightw. Technol., 1986, LT-4(1): 83~86

[12] J. N. Roe, K. Dobashi, K. Kobayashi. Design study of an optical hydrophone array[C]. Proc. SPIE, 1992, 1756: 42~47

[13] . L. Flanagan. Acoustic filters to aid digital voice[J]. Bell Syst. Tech. J., 1979, 58(4): 903-944.

[14] . L. Flanagan. Direct digital-to-analog conversion of acoustic signals[J]. Bell Syst. Tech. J., 1980, 59(9): 1693-1719.

[15] Wang Zefeng, Luo Hong, Xiong Shuidong et al.. Phase compensating detection method of interferometric fiber-optic hydrophones based on tuning the frequency of the laser[J]. Acta Optic Sinica, 2007, 27(4): 654~658
王泽锋,罗洪,熊水东 等. 基于光频调节的干涉型光纤水听器相位补偿检测方法[J]. 光学学报, 2007, 27(4): 654~658

[16] . L. Panton, J. M. Miller. Resonant frequencies of cylindrical Helmholtz resonators[J]. J. Acoust. Soc. Am., 1975, 57(6): 1533-1535.

[17] . R. Stinson, E. A. G. Shaw. Acoustic impedance of small circular orifices in thin plates[J]. J. Acoust. Soc. Am., 1988, 77(6): 2039-2042.

[18] . Potential of microperforated panel absorber[J]. J. Acoust. Soc. Am., 1998, 104(5): 2861-2866.

[19] . N. Norris, G. Wichham. Elastic Helmnoltz resonators[J]. J. Acoust. Soc. Am., 1993, 93(2): 617-630.

[20] . B. Horowitz, T. Nishida, L. N. Cattafesta et al.. Characterization of a compliant-backlpate Helmholtz resonator for an electromechanical acoustic liner[J]. International J. Aeroacoustics, 2002, 1(2): 183-205.

王泽锋, 胡永明. 一种具有声低通滤波特性的无源零差光纤水听器[J]. 光学学报, 2008, 28(4): 783. Wang Zefeng, Hu Yongming. A Novel Passive Homodyne Fiber-Optic Hydrophone of Acoustic Low-Pass Filtering[J]. Acta Optica Sinica, 2008, 28(4): 783.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!