光学学报, 2009, 29 (s1): 181, 网络出版: 2009-06-25   

基于功能化碳纳米管新型肿瘤靶向探针的研究

A Novel Cancer-Targeting Probe Based on Integrin αvβ3 Monoclonal Antibody Labeled Carbon Nanotubes
作者单位
华南师范大学激光生命科学研究所激光生命科学教育部重点实验室, 广东 广州 510631
摘要
肿瘤靶向治疗的研究是当今生物医学界的研究热点。寻找具有肿瘤靶向性的高效体内运输载体是实现肿瘤靶向治疗的关键。采用整合素αvβ3单克隆抗体作为肿瘤靶向分子, 以单壁碳纳米管(SWNT)作为运输载体, 通过碳纳米管表面的适当功能化, 将整合素αvβ3单抗标记在碳纳米管上, 构建整合素αvβ3单抗标记的碳纳米管新型肿瘤靶向探针; 研究探针在人脐静脉内皮细胞HUVEC和整合素αvβ3高表达的人脑神经胶质瘤细胞U87MG的肿瘤靶向性。实验结果表明, 这种整合素αvβ3单抗标记的碳纳米管探针对U87MG细胞靶向选择性高, 将能成为一种有潜力的药物输送及肿瘤分子影像的新型肿瘤靶向载体。
Abstract
The pursuit of efficient and highly target-selective transporters is an active topic in cancer targeting therapy. A novel cancer-targeting probe based on integrin αvβ3 monoclonal antibody labeled carbon nanotubes was developed to investigate cancer cell targeting in vitro. The results revealed that the system had a high efficiency in cancer cell targeting in integrin αvβ3 positive U87MG cells but low targeting in HUVEC cells, indicating that the high efficiency was due to the specific targeting property of integrin αvβ3 monoclonal antibody. Thus, the integrin αvβ3 monoclonal antibody labeled single-walled carbon nanotube (SWNT) probe is a potential carrier-candidate for cancer-imaging and drug-delivering in cancer therapy.
参考文献

[1] 李岩, 马洁. 肿瘤分子靶向治疗学[M]. 北京:人民卫生出版社, 2007. 1~13

    Li Yan, Ma Jie. Molecular Targeted Cancer Therapy[M]. Beijing: People Medical Publishing House Press, 2007. 1~13

[2] . R. Yang, P. Thordarson, J. J. Gooding et al.. Carbon nanotubes for biological and biomedical applications[J]. Nanotechnology, 2007, 18: 412001.

[3] . Wang. Carbon-nanotube based electrochemical biosensors: a review[J]. Electroanalysis, 2005, 17(1): 7-14.

[4] . Gowtham, R. H. Scheicher, R. Pandey et al.. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes[J]. Nanotechnology, 2008, 19: 125701.

[5] . Wang, P. Cherukuri, J. G. Duque et al.. PEG-eggs: single-walled carbon nanotubes in biocompatible shell-crosslinked micelles[J]. Carbon, 2007, 45: 2388-2393.

[6] . X. Cui. Advances and prospects on biomolecules functionalized carbon nanotubes[J]. J. Nanosci. Nanotechnol, 2007, 7: 1298-1314.

[7] . Pantarotto, J. P. Briand, M. Prato et al.. Translocation of bioactive peptides across cell membranes by carbon nanotubes[J]. Chem. Commun., 2004, 7(1): 16-17.

[8] . Pantarotto, R. Singh, D. MeCarthy et al.. Functionalized carbon nanotubes for plasmid DNA gene delivery[J]. Angew. Chem. Int. Ed., 2004, 43(39): 5242-5246.

[9] . W. S. Kam, Z. Liu, H. Dai. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J]. J. Am. Chem. Soc., 2005, 127: 12492-12493.

[10] . W. S. Kam, H. Dai. Carbon nanotubes as intraeellular Protein transporters: generality and biological functionality[J]. J. Am. Chem. Soc., 2005, 127(16): 6021-6026.

[11] . Lu, J. M. Moore, G. Huang et al.. RNA Polymer translocation with single-Walled carbon nanotubes[J]. Nano. Lett., 2004, 4(12): 2473-2477.

[12] . O. Hynes. Integrins: versatility, modulation, and signaling in cell adhesion[J]. Cell, 1992, 69: 11-25.

[13] . P. Eliceiri, D. A. Cheresh. The role of alpha(v) integrins during angiogenesis: insights into potential mechanisms of action and clinical development[J]. J. Clin. Invest., 1999, 103(9): 1227-1230.

[14] . H. Lim, T. N. Danthi, M. Bednarski et al.. A review: Integrin αvβ3-targeted molecular imaging and therapy in angiogenesis[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2005, 1: 110-114.

[15] . D. Hood, D. A. Cheresh. Role of integrins in cell invasion and migration[J]. Nat. Rev. Cancer, 2002, 2: 91-100.

[16] J. J. H. Chu, J. W. M. Lee, M. L. Ng. Bio-imaging the entry process of an emerging pathogen-ic virus : The West Nile virus[J]. Microsc Microanal, 2005, 11(suppl.2): 958~959

[17] . M. Odrljin, C. G. Haidaris, N. B. Lerner et al.. Integrin αvβ3-mediated endocytosis of immobilized fibrinogen by A549 lung alveolar epithelial cells[J]. Am. J. Respir. Cell Mol. Biol., 2001, 24: 12-21.

[18] . Roberts, S. Barry, A. Woods et al.. PDGF-regulated rab4-dependent recycling of αvβ3 integrin from early endosomes is necessary for cell adhesion an spreading[J]. Current Biology., 2001, 11: 1392-1402.

[19] . Panetti, P. J. McKeown-Longo. Receptor-mediated endocytosis of vitronectin is regulated by its conformational state[J]. J. Biol. Chem., 1993, 268: 11988-11993.

[20] . 整合素与肿瘤的靶向治疗[J]. 医学综述, 2008, 14(1): 60-62.

    . Integrins and targeted therapy of cancer therapy[J]. Medical Recapitulate, 2008, 14(1): 60-62.

[21] . B. Wisdom. Conjugation of antibodies to fluorescein or rhodamine[J]. Methods Mol. Biol., 2005, 295: 131-134.

[22] . Jorio, R. Saito, J. H. Hafner et al.. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering[J]. Phys. Rev. Lett., 2001, 86(6): 1118-1121.

[23] . 纳米管生物技术[J]. 化工学报, 2005, 56(6): 962-971.

    . Review of nanotube bio-technology[J]. J. Chemical Industry and Engineering, 2005, 56(6): 962-971.

[24] . Moonsub, N. W. S. Kam, R. J. Chen et al.. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition[J]. Nano Lett., 2002, 2(4): 285-288.

欧忠敏, 吴宝艳, 邢达. 基于功能化碳纳米管新型肿瘤靶向探针的研究[J]. 光学学报, 2009, 29(s1): 181. Ou Zhongmin, Wu Baoyan, Xing Da. A Novel Cancer-Targeting Probe Based on Integrin αvβ3 Monoclonal Antibody Labeled Carbon Nanotubes[J]. Acta Optica Sinica, 2009, 29(s1): 181.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!