光学学报, 2011, 31 (4): 0414002, 网络出版: 2011-03-31   

高斯涡旋光束分析及其在中继镜系统中的应用

Analysis of Gaussian-Vortex Beam and Its Application in a Relay Mirror System
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
提出了一种以高斯涡旋光束作为光源,实现中继镜系统上行链路能量损耗有效降低的新方法。计算了以高斯光束为光源的30 km高度中继镜系统上行链路能量损耗情况,结果是,系统上行链路的能量耦合效率为76.48%,接收望远镜次镜阻挡作用造成了主要能量损耗,阻挡损耗的能量占总能量的22.85%。分析了涡旋光束中心暗核大小及形态与光束参数的关系,结果是,暗核的形状由光束相位涡旋量决定,仅当光束相位涡旋量为2π整数倍时,暗核为圆形;暗核的口径大小分别随着光束相位涡旋量的增加和光束传输距离的增加而增加。计算了以高斯涡旋光束作为光源的30 km高度中继镜系统上行链路能量损耗情况,结果是,以高斯涡旋光束作为光源时,系统的能量耦合效率可达到97.25%,有效地降低了系统上行链路的能量损耗。
Abstract
A new method that decreases the power loss in uplink propagation of a relay mirror system by using a Gaussian-vortex beam source is proposed. Performance of a 30 km-altituide relay mirror system that uses a Gaussian beam source is calculated. Results show that power coupling efficiency of uplink propagation in the relay mirror system is 76.48%, beam blocked by secondary mirror of the receiving telescope causes the main power loss and power loss proportion caused by beam blocking is 22.85%. Relation between shape and aperture of the dark area generated at the center of a Gaussian-vortex beam with parameters of the beam are analyzed in detail. Results show that shape of the hollow area is determined by amount of phase vortex of the beam, the hollow area is circular only when amount of phase vortex is times of 2π, aperture of the dark hollow increases with the increase of amount of phase vortex and propagation distance, respectively. Performance of a 30 km-altituide relay mirror system that uses a Gaussian-vortex beam source is calculated. Results show that power coupling efficiency of uplink propagation in the relay mirror system is 97.25%, and power loss in uplink propagation is significantly decreased.
参考文献

[1] . Tyson. Vortex beams propagation through atmospheric turbulence and topological charge conservation[J]. J. Opt. Soc. Am. A, 2008, 25(1): 225-230.

[2] . Generation of optical vortex beams by nonlinear wave mixing[J]. Opt. Express, 2007, 15(26): 17619-17624.

[3] . Stochastic electromagnetic vortex beam and its propagation[J]. Phys. Lett. A, 2008, 372(15): 2734-2740.

[4] . V. G. Krishna Inavalli, Nirmal K. Viswanathan. Switchable vector vortex beam generation using an optical fiber[J]. Opt. Commun., 2010, 283(6): 861-864.

[5] . Generation of doughnut like vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes[J]. Appl. Opt., 2008, 47(14): 2583-2591.

[6] 陆璇辉, 黄慧琴, 赵承良 等. 涡旋光束和光学涡旋[J]. 激光与光电子学进展, 2008, 45(1): 51~55

    Lu Xuanhui, Huang Huiqin, Zhao Chengliang et al.. Optical vortex beams and optical vortices[J]. Laser & Optoelectronics Progress, 2008, 45(1): 51~55

[7] 刘晓云, 唐宏亮, 李倩 等. 部分相干电磁涡旋光束的聚焦特性[J]. 中国激光, 2009, 36(s1): 199~204

    Liu Xiaoyun, Tang Hongliang, Li Qian et al.. Focusing characteristics of partially coherent electromagnetic vortex beams[J]. Chinese J. Lasers, 2009, 36(s1): 199~204

[8] 王涛, 蒲继雄. 涡旋光束单缝衍射的理论和实验研究[J]. 中国激光, 2009, 36(11): 2902~2907

    Wang Tao, Pu Jixiong. Theoretical and experimental study on vortex beam transmitted through a single-slit[J]. Chinese J. Lasers, 2009, 36(11): 2902~2907

[9] 王涛, 蒲继雄, 陈子阳. 涡旋光束在湍流大气中的传输特性[J]. 光学学报, 2008, 28(s2): 82~86

    Wang Tao, Pu Jixiong, Chen Ziyang. Propagation of vortex beams in a turbulent atmosphere[J]. Acta Optica Sinica, 2008, 28(s2): 82~86

[10] 付文羽, 李高清, 刘小军. 部分相干涡旋光束在大气湍流中的远场传输特性[J]. 光学学报, 2009, 29(11): 2958~2962

    Fu Wenyu, Li Gaoqing, Liu Xiaojun. Propagation of partially coherent vortex beams in the turbulent atmosphere[J]. Acta Optica Sinica, 2009, 29(11): 2958~2962

[11] Edwards A. Duff, Donald C. Washburn. The magic of relay mirrors [C]. SPIE, 2004, 5413: 137~144

[12] Defense Science Board, Department of Defense. Report of the defense board task force on high energy laser weapon system applications[R]. 2001: 56~57

[13] Steven G. Leonard. Laser options for national missile defense[R]. Alabama, Air Command and Staff College Air University, 1998:75~84

[14] 任国光. 高能激光武器的现状与发展趋势[J]. 激光与光电子学进展, 2008, 45(9): 67~69

    Ren Guoguang. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 67~69

[15] . Simpson. Tactical laser relay mirror demonstration anticipated before 2011[J]. Inside The Air Force, 2007, 18(41): 3.

[16] . . Analysis of the power coupling efficiency of the relay mirror system with the transmitter composed of sub-telescope array[J]. Opt. Commun., 2010, 283(16): 3180-3183.

[17] . . Beam shaping for the relay mirror system[J]. Opt. & Laser Technol., 2011, 43(3): 488-490.

[18] . . Improving the power coupling efficiency in relay mirror system using multiple laser array and SPGD algorithm[J]. Opt. & Laser Technol., 2010, 42(2): 392-396.

[19] Xiuxiang Chu, Guoquan Zhou, Power coupling of a two-Cassegrain telescope system in turbulent atmosphere in a slant path[J]. Opt. Express, 2007, 15(12): 7697~7707

[20] . . Beam shaping for uplink transmission of the relay mirror system[J]. Appl. Opt., 2010, 49(17): 3245-3249.

吴慧云, 黄值河, 吴武明, 许晓军, 陈金宝, 赵伊君. 高斯涡旋光束分析及其在中继镜系统中的应用[J]. 光学学报, 2011, 31(4): 0414002. Wu Huiyun, Huang Zhihe, Wu Wuming, Xu Xiaojun, Chen Jinbao, Zhao Yijun. Analysis of Gaussian-Vortex Beam and Its Application in a Relay Mirror System[J]. Acta Optica Sinica, 2011, 31(4): 0414002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!