光学学报, 2014, 34 (9): 0906002, 网络出版: 2014-07-22   

菱形空气孔的单一偏振单模太赫兹光子晶体光纤

Single-Polarization Single-Mode Rhombic-Hole Terahertz Photonic Crystal Fibers
作者单位
南京邮电大学光电工程学院, 江苏 南京 210023
摘要
提出了一种新型的基于菱形空气孔的单一偏振单模太赫兹光子晶体光纤,通过改变光纤中引入缺陷的个数、尺寸以及所处位置,研究其对光纤单一偏振单模特性的影响。全文仿真建模采用全矢量有限元法,结果表明:当光纤中引入两缺陷时,随着缺陷尺寸的增加,单一偏振单模运行区域向高频方向移动,区域宽度稍有增加;当引入四缺陷时,靠近芯区的缺陷对单一偏振单模特性影响占主导;基于此,在芯区四周各引入尺寸相同的缺陷,对比四缺陷和两缺陷时的情况发现,四缺陷时单一偏振单模运行区域(1.07~1.36 THz)向高频方向移动,且区域宽度(为0.29 THz)增加明显,是两缺陷时的1.32倍。此类光纤可应用于某些对偏振态有非常严格要求的系统中,故具有实际意义。
Abstract
A novel single-polarization single-mode (SPSM) rhombic-hole terahertz (THz) photonic crystal fiber (PCF) is proposed. The influence on the characteristics of SPSM is studied by changing the number, size and location of the defects in fiber. A full-vector finite element method is used for modeling, and the simulation results are as follows. In the case of two defects in PCF, with the increase of defect size, SPSM operation range moves towards high-frequency, and its width is increased slightly. In the case of four defects in PCF, the characteristics of SPSM is affected by the defects near the core region easily. Based on this conclusion, four same defects are introduced around the core region in fiber. Compared with the case of two defects, SPSM operation range (1.07 THz to 1.36 THz) moves towards high-frequency and its width (0.29 THz) increases significantly for four defects case, which is 1.32 times than the case of two defects. So the fibers have wide applications in some systems that have strict requirements about the polarization states, and have practical significance.
参考文献

[1] T A Birks, J C Knight, P S J Russell. Endlessly single-mode photonic crystal fiber [J]. Opt Lett, 1997, 22(13): 961-963.

[2] W H Reeves, J C Knight, P S J Russell, et al.. Demonstration of ultra-flattened dispersion in photonic crystal fibers [J]. Opt Express, 2002, 10(14): 609-613.

[3] 张璐. 光子晶体光纤的低损耗透镜耦合技术[J]. 光学学报, 2014, 34(1): 0106006.

    Zhang Lu. Low-loss lens-coupling technique on photonic crystal fibers [J]. Acta Optica Sinica, 2014, 34(1): 0106006.

[4] H S Peter. THz technology [J]. IEEE Trans Microwave Theory Tech, 2002, 50(3): 910-928.

[5] 李化月, 刘建军, 韩张华, 等. 基于类电磁诱导透明效应的太赫兹折射率传感器[J]. 光学学报, 2014, 34(2): 0223003.

    Li Huayue, Liu Jianjun, Han Zhanghua, et al.. Terahertz metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor [J]. Acta Optica Sinica, 2014, 34(2): 0223003.

[6] Albert Redo Sanchez, Xi Cheng Zhang. Terahertz science and technology trends [J]. IEEE J Sel Top Quantum Electron, 2008, 14(2): 260-269.

[7] T Okoshi, K Oyamada. Single polarization single mode optical fiber with refractive index pits on both sides of cores [J]. Electron Lett, 1980, 16(18): 712-713.

[8] T Okoshi. Single-polarization single mode optical fibers [J]. IEEE J Quantum Electron, 1981, 17(6): 879-884.

[9] J Simpson, R Stolen, F Sears, et al.. A single-poarization fiber [J]. J Lightwave Technol, 1983, LT-1(2): 370-373.

[10] K Okamoto. Single-polarisation operation in highly birefringent optical fibres [J]. Appl Opt, 1984, 23(15): 2638-2642.

[11] H Suganuma, T Myogadani, H Yokota. Characterization of side-tunnel single polarization optical fiber [C]. European Conference on Optical Communications, 1985. 139-142.

[12] K S Chiang. Stress-induced birefringence fibers designed for single-polarization single-mode operation [J]. J Lightwave Technol, 1989, 7(2): 436-441.

[13] K Tajima, M Ohashi, Y Sasaki. A new single-polarization optical fiber [J]. J Lightwave Technol, 1989, 7(10): 1499-1503.

[14] Y W Lee, J Jung, B Lee. Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter [J]. IEEE Photon Technol Lett, 2004, 16(1): 54-56.

[15] J Zhang, S Guo, W Jung, et al.. Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers [J]. Opt Express, 2003, 11(24): 3262-3270.

[16] Y J Song, L Zhan, S Hu, et al.. Tunable multiwavelength Brillouin-Erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter [J]. IEEE Photon Technol Lett, 2004, 16(9): 2015-2017.

[17] D Pierluigi, J U Heiko, M Juergen, et al.. Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory [J]. IEEE J Sel Top Quantum Electron, 2003, 9(5): 1394-1405.

[18] M J Messerly, J R Onstott, R C Mikkelson. A broadband single-polarization optical fiber [J]. J Lightwave Technol, 1991, 9(7): 817-820.

[19] K Hiirokazu, K Satoki, K Shigeki, et al.. Absolutely single polarization photonic crystal fiber [J]. IEEE Photon Technol Lett, 2004, 16(1): 182-184.

[20] B Hu, M Lu, W Li, et al.. High birefringent rhombic-hole photonic crystal fibers [J]. Appl Opt, 2010, 49(31): 6098-6101.

[21] Y S Jin, G J Kim, S G Jeon. Terahertz dielectric properties of polymers[J]. J Korean Phys Soc, 2006, 49(2): 513-517.

汪静丽, 陈鹤鸣. 菱形空气孔的单一偏振单模太赫兹光子晶体光纤[J]. 光学学报, 2014, 34(9): 0906002. Wang Jingli, Chen Heming. Single-Polarization Single-Mode Rhombic-Hole Terahertz Photonic Crystal Fibers[J]. Acta Optica Sinica, 2014, 34(9): 0906002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!