光学学报, 2015, 35 (6): 0623003, 网络出版: 2015-06-02   

低损耗超小模面积杂化表面等离激元波导

Hybrid Surface Plasmon Polariton Waveguide of Low-Loss and Ultra-Small Modal Area
作者单位
吉首大学物理与机电工程学院, 湖南 吉首 416000
摘要
提出了一种在矩形金属沟槽中插入两块相同的矩形硅核的新型杂化波导结构,基于有限元方法,在波长为1550 nm 时,系统地研究了两块介质核间的距离、介质核的高度、宽度以及介质核与金属间的距离对有效模面积和传播距离的影响。计算结果表明,通过左右狭缝或者中间狭缝的场增强效应,能得到低损耗超小模面积的杂化模,当介质核与金属间的距离比较大时,相对于中间无狭缝的情况,当缝隙为5 nm 时,该结构的有效模面积急剧减小,约减到原来的七分之一,而传播距离略有增长,在50 个波长左右,而且中间缝隙越窄(不等于0 nm),模面积越小,传播距离越大,介质核越高,传播距离越远而模面积几乎不变。当介质核与金属间的距离比较小时,中间缝隙越小,介质核的宽度越小,模面积越小。
Abstract
A novel hybrid waveguide structure of rectangular silicon insert two identical nuclei in a rectangular metal trench is presented. Based on the finite element method, variations of effective mode area and propagation distance with distance between the two nuclear medium, nuclear medium height and width, the distances between dielectric core and metal are systematic studied at a wavelength of 1550 nm. Calculated results show that the enhanced effect of field in gaps of the dielectric core or between dielectric core and metal can get a low loss hybrid mode of ultra-small modal area. When the distances between dielectric core and metal is wide, the gap in dielectric core is 5 nm, effective mode area of the structure is drastically reduced to about one-seventh respect to the nuclear medium with no gap and the propagation distance increasing a slight remains at 50 wavelengths around. And the smaller the mode area is, the longer the propagation distance is. The higher the gap dielectric core is, the smaller the propagation distance is, and the mode area is almost invariably. When the height of dielectric core is higher, the propagation distance is longer, but the effective mode area changes minor. When the distance between dielectric core and metal is narrow, the gap of nuclear medium and nuclear medium width are much narrower, the effective mode area are smaller.
参考文献

[1] Dai Daoxing, He Sailing. Low-loss hybrid plasmonic waveguide with double low-index nano-slots[J]. Opt Express, 2010, 18(17): 17958-17966.

[2] V R Almeida, Q Xu, C A Barrios, et al.. Guiding and confining light in void nanostructure[J]. Opt Lett, 2004, 29(11): 1209-1211.

[3] T Tsuchizawa, K Yamada, H Fukuda, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE J Sel Top Quantum Electron, 2005, 11(1): 232-240.

[4] S Bay, P Lambropoulos, K Molmer. Atom-atom interaction in strongly modified reservoirs[J]. Phys Rev A, 1997, 55(2): 1485-1496.

[5] S Hughes. Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity[J]. Phys Rev Lett, 2005, 94(22): 227402.

[6] Gonzalez-Tudela, Martin-Cano, E Moreno, et al.. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides[J]. Phys Rev Lett, 2011, 106(2): 020501

[7] 曲连杰, 杨跃德, 黄永箴. 光子晶体波导慢光特性研究[J]. 光学学报, 2011,31(1): 0113002.

    Qu Lianjie, Yang Yuede, Huang Yongzhen. Slow-light characteristics of photonic crystal waveguides[J]. Acta Optica Sinica, 2011, 31(1): 0113002.

[8] V R Almeida, Q F Xu, C A Barrios, et al.. Guiding and confining light in void nanostructure[J]. Opt Leet, 2004, 29 (11): 1209-1211.

[9] 朱志宏,叶卫民, 袁晓东, 等. 光子晶体波导定向耦合器[J]. 光学学报, 2003, 23(10): 1237-1240.

    Zhu Zhihong, Ye Weimin,Yuan Xiaodong, et al.. Photonic crystal waveguide directional coupler[J]. Acta Optica Sinica, 2003, 23(10): 1237-1240.

[10] Li Jiahua, Yu Rong, Wu Ying. Dipole-induced high-order sideband comb employing a quantum dot strongly coupled to a photonic crystal cavity via a waveguide[J]. Phys Rev B, 2014, 89(3): 035311

[11] Zhang Xiaoyang, A Hu, T Zhang, et al.. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties[J]. Appl Phys Lett, 2010, 96(4): 043109.

[12] Zhang Xiaoyang, A Hu, J Z Wen, et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides[J]. Opt Express, 2010, 18(18): 18945-18959.

[13] J Takahara, S Yamagishi, H Taki et al.. Guiding of a one-dimensional optical beam with nanometer diameter[J]. Opt Lett, 1997, 22(7): 475-477.

[14] Bian Yunsheng, Zheng Zheng, Zhao Xin, et al.. Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale[J]. IEEE Photon Technol Lett, 2012, 24(15):1279-1281

[15] Chen Lin, Zhang Tian, Li Xun, et al.. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film[J]. Opt Express, 2012, 20(18): 20535-20544.

[16] 崔乃迪, 梁静秋, 梁中翥, 等. 基于硅纳米线波导的两级光子晶体缩束器[J]. 光学学报, 2012, 32(1): 0123004.

    Cui Naidi, Liang Jingqiu, Liang Zhongzhu, et al.. Two stage photonic crystal beam compressor based on silicon nanowire waveguide[J]. Acta Optica Sinica, 2012, 32(1): 0123004.

[17] 胡梦珠, 周思阳, 韩琴, 等. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究[J]. 物理学报, 2014, 63(2): 029501.

    Hu Mengzhu, Zhou Siyang, Han Qin, et al.. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulatormetal waveguides[J]. Acta Phys Sin, 2014, 63(2): 029501.

[18] D F P Pile, T Ogawa, D K Gramotnev, et al.. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide[J]. Appl Phys Lett, 2005, 87: 261114.

[19] S I Bozhevolnyi, V S Volkov, E Devaux, et al.. Channel plasmon-polariton guiding by subwavelength metal grooves[J]. Phys Rev Lett, 2005, 95(4): 046802.

[20] S I Bozhevolnyi. Effective-index modeling of channel plasmon polaritons[J]. Opt Express, 2006, 14(20): 9467-9476.

[21] R F Oulton, V J Sorger, D A Genov, et al.. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nat photonics, 2008, 2(8): 496-500.

[22] Bian Yunsheng, Gong Qihuang. Highly confined guiding of low-loss plasmon waves in hybrid metal-dielectric slot waveguides[J]. Nat Nanotech, 2014, 25(34): 345201.

[23] C C Huang. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices[J]. Opt Express, 2013, 21(24): 29544-29557.

[24] Zhang Zhonglai, Wang Jian. Long-range hybrid wedge plasmonic waveguide[J]. Sci Rep, 2014, 4: 06870.

[25] Yang Pengfei, Di Zhigang, Xu Hongxing. Low-loss light transmission in a rectangularshaped hybrid metal trench at 1550 nm[J]. Opt Express, 2013, 21(14): 17053-17059.

许丹, 黄勇刚, 王小云, 何浩, 何海龙. 低损耗超小模面积杂化表面等离激元波导[J]. 光学学报, 2015, 35(6): 0623003. Xu Dan, Huang Yonggang, Wang Xiaoyun, He Hao, He Hailong. Hybrid Surface Plasmon Polariton Waveguide of Low-Loss and Ultra-Small Modal Area[J]. Acta Optica Sinica, 2015, 35(6): 0623003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!