光学学报, 2016, 36 (10): 1026001, 网络出版: 2016-10-12   

自由空间中偏振调制光场的传输及控制 下载: 3705次

Transmission and Control of Polarization Modulation Light Filed in Free Space
作者单位
西北工业大学理学院陕西省光信息技术重点实验室,教育部空间应用物理与化学重点实验室, 陕西 西安 710072
摘要
光场的偏振态作为光场调控的一个新自由度,逐渐成为研究者们关注的热点。对光场偏振态的非均匀调制可以实现光子自旋-轨道相互耦合,从而发掘很多新的光学现象,其中Pancharatnam-Berry(PB)相位扮演了至关重要的角色。在偏振转换中,光场的不同偏振分量得到不同的PB相位。利用PB相位对光场偏振分量进行波前整形,以控制光场偏振分量的传输,从而在光场传输过程中实现偏振转换、角动量转化、能流控制等。光场偏振调制的相关研究在自旋选择成像、微粒操控、激光微加工、信息传输与修复中具有潜在的应用价值。分析了偏振调制光场的传输和控制原理,总结了近年来国内外的相关研究工作进展。
Abstract
As a new degree of freedom for light manipulation, the polarization state of a light field is gradually becoming a focused issue. The photon spin-orbit intercoupling can be achieved by the non-uniform modulation for the polarization state of the light filed, and then a variety of novel optical phenomena can be explored. Thereinto, the Pancharatnam-Berry (PB) phase plays an important role. In the polarization conversion, different polarization components of the light field are with different PB phases. We can control the transmission of the polarization components of the light field by using PB phases to shape the wave fronts of the polarization components, and achieve the polarization conversion, spin-orbit conversion, and energy flow management in the process of the light transmission. The related research of light polarization modulation has potential application values in spin-selected imaging, particle manipulation, laser micro-processing, and information transmission and recovery. We discuss the mechanism of transmission and manipulation of the polarization modulation light field, and present an overview of the recent research in this field.
参考文献

[1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185-8189.

[2] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[3] Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Phys Rev Lett, 2007, 99(21): 213901.

[4] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Opt Lett, 2007, 32(8): 979-981.

[5] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. J Opt Soc Am A, 1987, 4(4): 651-654.

[6] Durnin J, Miceli J J, Jr, Eberly J H. Diffraction-free beams[J]. Phys Rev Lett, 1987, 58(15): 1499-1501.

[7] Zhang P, Hu Y, Li T C, et al. Nonparaxial Mathieu and Weber accelerating beams[J]. Phys Rev Lett, 2012, 109(19): 193901.

[8] Chremmos I D, Chen Z G, Christodoulides D N, et al. Bessel-like optical beams with arbitrary trajectories[J]. Opt Lett, 2012, 37(23): 5003-5005.

[9] Zhao J Y, Zhang P, Deng D M, et al. Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories[J]. Opt Lett, 2013, 38(4): 498-500.

[10] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Phys Rev Lett, 2005, 94(23): 233902.

[11] O′Neil A T, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Phys Rev Lett, 2002, 88(5): 053601.

[12] Garcés-Chávez V, McGloin D, Padgett M J, et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle[J]. Phys Rev Lett, 2003, 91(9): 093602.

[13] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

[14] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photon, 2012, 6: 488-496.

[15] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photon, 2009, 1(1): 1-57.

[16] Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Opt Commun, 2000, 179(1-6): 1-7.

[17] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901.

[18] Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photon, 2008, 2: 501-505.

[19] Kozawa Y C, Sato S. Focusing property of a double-ring-shaped radially polarized beam[J]. Opt Lett, 2006, 31(6): 820-822.

[20] Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Opt Lett, 2005, 30(8): 848-850.

[21] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photon, 2008, 2: 219-225.

[22] Zhao Y Q, Edgar J S, Jeffries G D M, et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Phys Rev Lett, 2007, 99(7): 073901.

[23] Hnatovsky C, Shvedov V, Krolikowski W, et al. Revealing local field structure of focused ultrashort pulses[J]. Phys Rev Lett, 2011, 106(12): 123901.

[24] Xie X S, Chen Y Z, Yang K, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Phys Rev Lett, 2014, 113(26): 263901.

[25] Bliokh K Y, Rodríguez-Fortuo F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photon, 2015, 9: 796-808.

[26] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 2007, 32(24): 3549-3551.

[27] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 2012, 20(19): 21715-21721.

[28] Liu S, Wang M R, Li P, et al. Abrupt polarization transition of vector autofocusing Airy beams[J]. Opt Lett, 2013, 38(14): 2416-2418.

[29] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Opt Lett, 1996, 21(23): 1948-1950.

[30] Bomzon Z, Kleiner V, Hasman E. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings[J]. Appl Phys Lett, 2001, 79(11): 1587-1589.

[31] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Opt Lett, 2002, 27(21): 1875-1877.

[32] Pancharatnam S. Achromatic combinations of birefringent plates[C]. Proceedings of the Indian Academy of Sciences-Section A, 1955, 41(4): 137-144.

[33] Berry M V. The adiabatic phase and Pancharatnam′s phase for polarized light[J]. J Mod Opt, 1987, 34(11): 1401-1407.

[34] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141-1143.

[35] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

[36] Ling X H, Zhou X X, Yi X N, et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light Sci Appl, 2015, 4: 1-6.

[37] Ke Y G, Liu Y C, He Y L, et al. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces[J]. Appl Phys Lett, 2015, 107(4): 041107.

[38] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Appl Phys Lett, 2003, 82(3): 328-330.

[39] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 2012, 3(1198): 1-6.

[40] Liu S, Li P, Zhang Y, et al. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift[J]. Sci Rep, 2016, 6: 20774.

[41] Gu B, Pan Y, Wu J L, et al. Manipulation of radial-variant polarization for creating tunable bifocusing spots[J]. J Opt Soc Am A, 2014, 31(2): 253-257.

[42] Ke Y G, Liu Y C, Zhou J X, et al. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens[J]. Appl Phys Lett, 2016, 108(10): 101102.

[43] Ke Y G, Liu Y C, Zhou J X, et al. Photonic spin filter with dielectric metasurfaces[J]. Opt Express, 2015, 23(26): 33079-33086.

[44] Wang S, Wang X K, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens[J]. Opt Express, 2015, 23(20): 26434-26441.

[45] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Phys Rev Lett, 2006, 96(16): 163905.

[46] Shu W X, Ke Y G, Liu Y C, et al. Radial spin Hall effect of light[J]. Phys Rev A, 2016, 93(1): 013839.

[47] Wei B Y, Chen P, Hu W, et al. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask[J]. Sci Rep, 2015, 5: 17484.

[48] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6: 8241.

[49] Wen D D, Chen S M, Yue F Y, et al. Metasurface device with helicity-dependent functionality[J]. Adv Opt Mater, 2016, 4(2): 321-327.

[50] Cardano F, Karimi E, Marrucci L, et al. Generation and dynamics of optical beams with polarization singularities[J]. Opt Express, 2013, 21(7): 8815-8820.

[51] Moreno I, Davis J A, Sánchez-López M M, et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance[J]. Opt Lett, 2015, 40(23): 5451-5454.

[52] Davis J A, Moreno I, Badham K, et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Opt Lett, 2016, 41(10): 2270-2273.

[53] Wang X L, Lou K, Chen J, et al. Unveiling locally linearly polarized vector fields with broken axial symmetry[J]. Phys Rev A, 2011, 83(6): 063813.

[54] Li P, Liu S, Xie G F, et al. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams[J]. Opt Express, 2015, 23(6): 7131-7139.

[55] Li P, Liu S, Zhang Y, et al. Experimental realization of focal field engineering of the azimuthally polarized beams modulated by multi-azimuthal masks[J]. J Opt Soc Am B, 2015, 32(9): 1867-1872.

[56] Jiao X Y, Liu S, Wang Q, et al. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles[J]. Opt Lett, 2012, 37(6): 1041-1043.

[57] Zhang W, Liu S, Li P, et al. Controlling the polarization singularities of the focused azimuthally polarized beams[J]. Opt Express, 2013, 21(1): 974-983.

[58] Gao X Z, Pan Y, Li S M, et al. Vector optical fields broken in the spatial frequency domain[J]. Phys Rev A, 2016, 93(3): 033834.

[59] Wu G F, Wang F, Cai Y J. Generation and self-healing of a radially polarized Bessel-Gauss beam[J]. Phys Rev A, 2014, 89(4): 043807.

[60] Milione G, Dudley A, Nguyen T A, et al. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams[J]. J Opt, 2015, 17(3): 035617.

[61] Zhang Y, Li P, Liu S, et al. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams[J]. Opt Lett, 2015, 40(19): 4444-4447.

[62] Ling X H, Yi X N, Zhou X X, et al. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect[J]. Appl Phys Lett, 2014, 105(15): 151101.

刘圣, 李鹏, 章毅, 韩磊, 程华超, 赵建林. 自由空间中偏振调制光场的传输及控制[J]. 光学学报, 2016, 36(10): 1026001. Liu Sheng, Li Peng, Zhang Yi, Han Lei, Cheng Huachao, Zhao Jianlin. Transmission and Control of Polarization Modulation Light Filed in Free Space[J]. Acta Optica Sinica, 2016, 36(10): 1026001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!