光学学报, 2016, 36 (10): 1026005, 网络出版: 2016-10-12   

基于光取向液晶的光场调控技术 下载: 1116次

Beam Shaping Based on Photopatterned Liquid Crystals
作者单位
南京大学固体微结构物理国家重点实验室, 现代工程与应用科学学院,人工微结构科学与技术协同创新中心, 江苏 南京 210093
摘要
由于特种光束的独特性质和丰富应用,光场调控技术近年来得到了越来越广泛的关注。设计特定结构调控普通高斯光束的振幅、相位或偏振方向,可以得到一系列特殊光场。利用一种偏振敏感的光取向材料,基于动态缩微投影曝光系统的液晶光控取向技术,可实现精确、任意和可重构的液晶方位角的取向控制。基于该项技术制备了二值或渐变的液晶微结构元件,对入射光场的各个参量维度进行调控,产生了高品质、高效率的涡旋光束、矢量光束和艾里光束。利用该项技术制备的器件具有成本低廉、轻便集成、电光可调、偏振可控和宽波段适用等特点。综述了本课题组近期在该领域的系列研究工作,或将为光场调控技术带来全新的可能,为液晶光学器件带来更广泛的应用。
Abstract
Recently, optical beam shaping has attracted intensive attention due to the fantastic properties and various applications of specific beams. These beams can be converted from Gaussian beams through particular spatial amplitude, phase or polarization control. In this work, a liquid crystal photopatterning technique based on dynamic microlithography with a polarization-sensitive photoalignment agent is presented. This technique enables the accurate, arbitrary and reconfigurable azimuthal angle control of liquid crystals, thus supplies a powerful approach for the tailoring of arbitrary fine microstructures with binary or continuously space-variant liquid crystal azimuthal orientations. Based on this technique, high quality vortex beams, vector beams and Airy beams are generated. Besides high efficiency, good electrical switchability and broad wavelength tolerance, the proposed devices also exhibit merits of compact size, low cost, dynamic mode conversion, and polarization controllable energy distribution. In this paper, our recent work on some specially designed patterns and corresponding specific optical fields is briefly reviewed. It may pave a bright way towards beam shaping and bring new possibilities for advanced liquid crystal photonic devices.
参考文献

[1] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.

[2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

[3] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[4] Siviloglou G, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[6] Yalizay B, Soylu B, Akturk S. Optical element for generation of accelerating Airy beams[J]. Journal of the Optical Society of America A, 2010, 27(10): 2344-2346.

[7] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.

[8] Machavariani G, Lumer Y, Moshe I, et al. Efficient extracavity generation of radially and azimuthally polarized beams[J]. Optics Letters, 2007, 32(11): 1468-1470.

[9] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

[10] Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency[J]. Applied Physics Letters, 2011, 99(26): 261106.

[11] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150.

[12] Zhou J X, Liu Y C, Ke Y G, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.

[13] Beresna M, Gecevicius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

[14] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206.

[15] Kitzerow H S. Polymer-dispersed liquid crystals from the nematic curvilinear aligned phase to ferroelectric films[J]. Liquid Crystals, 1994, 16(1): 1-31.

[16] Ren H W, Lin Y H, Wu S T. Linear to axial or radial polarization conversion using a liquid crystal gel[J]. Applied Physics Letters, 2006, 89(5): 051114.

[17] Luo D, Dai H T, Sun X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal[J]. Optics Express, 2013, 21(25): 31318-31323.

[18] Ge S J, Ji W, Cui G X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating[J]. Optical Materials Express, 2014, 4(12): 2535-2541.

[19] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nature Communications, 2013, 4: 2289.

[20] Chen J, Bos P J, Vithana H, et al. Electro-optically controlled liquid crystal diffraction grating[J]. Applied Physics Letters, 1995, 67(18): 2588-2590.

[21] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.

[22] Kim J H, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment[J]. Nature, 2002, 420(6912): 159-162.

[23] Wen B, Petschek R G, Rosenblatt C. Nematic liquid-crystal polarization gratings by modification of surface alignment[J]. Applied Optics, 2002, 41(7): 1246-1250.

[24] Honma M, Nose T. Polarization-independent liquid crystal grating fabricated by microrubbing process[J]. Japanese Journal of Applied Physics, 2003, 42(11): 6992-6997.

[25] Schadt M, Schmitt K, Kozinkov V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers[J]. Japanese Journal of Applied Physics, 1992, 31(7R): 2155-2164.

[26] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal[J]. Nature, 1996, 381: 212-215.

[27] Hu W, Srivastava A K, Lin X W, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments[J]. Applied Physics Letters, 2012, 100(11): 111116.

[28] Blinov L M, Barberi R, Cipparrone G, et al. Liquid crystal orientation by holographic phase gratings recorded on photosensitive Langmuir-Blodgett films[J]. Liquid Crystals, 1999, 26(3): 427-436.

[29] Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces[J]. Applied Physics Letters, 2006, 89(12): 121105.

[30] Li Y M, Kim J, Escuti M J. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings[J]. Applied Optics, 2012, 51(34): 8236-8245.

[31] Culbreath C, Glazar N, Yokoyama H. Note: automated maskless micro-multidomain photoalignment[J]. Review of Scientific Instruments, 2011, 82(12): 126107.

[32] Wu H, Hu W, Hu H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system[J]. Optics Express, 2012, 20(15): 16684-16689.

[33] Miskiewicz M N, Escuti M J. Direct-writing of complex liquid crystal patterns[J]. Optics Express, 2014, 22(10): 12691-12706.

[34] Chen P, Lu Y Q, Hu W. Beam shaping via photopatterned liquid crystals[J]. Liquid Crystals, 2016, DOI:10.1080/02678292.2016.1191685.

[35] Akiyama H, Kawara T, Takada H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells[J]. Liquid Crystals, 2002, 29(10): 1321-1327.

[36] Chigrinov V, Pikin S, Verevochnikov A, et al. Diffusion model of photoaligning in azo-dye layers[J]. Physical Review E, 2004, 69(6): 061713.

[37] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

[38] Wei B Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595.

[39] Lin X W, Hu W, Hu X K, et al. Fast response dual-frequency liquid crystal switch with photo-patterned alignments[J]. Optics Letters, 2012, 37(17): 3627-3629.

[40] Berry M V. The adiabatic phase and Pancharatnam′s phase for polarized light[J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.

[41] Nersisyan S, Tabiryan N, Steeves D, et al. Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching[J]. Journal of Nonlinear Optical Physics & Materials, 2009, 18(1): 1-47.

[42] Du T, Fan F, Tam A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195.

[43] Duan W, Chen P, Wei B Y, et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating[J]. Optical Materials Express, 2016, 6(2): 597-602.

[44] Chen H, Weng Y, Xu D, et al. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate[J]. Optics Express, 2016, 24(7): 7287-7298.

[45] Chen P, Wei B Y, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133-139.

[46] Lei T, Zhang M, Li Y, et al. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light: Science & Applications, 2015, 4: e257.

[47] Liu J, Min C, Lei T, et al. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray[J]. Optics Express, 2016, 24(1): 212-218.

[48] Ge S J, Chen P, Ma L L, et al. Optical array generator based on blue phase liquid crystal Dammann grating[J]. Optical Materials Express, 2016, 6(4): 1087-1092.

[49] Fu S Y, Zhang S K, Wang T L, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 2016, 24(6): 6240-6248.

[50] Chen P, Ge S J, Ma L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals[J]. Physical Review Applied, 2016, 5(4): 044009.

[51] Zhou C H, Liu L R. Numerical study of Dammann array illuminators[J]. Applied Optics, 1995, 34(26): 5961-5969.

[52] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

[53] Slussarenko S, Murauski A, Du T, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090.

[54] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 2016, 6: 25528.

[55] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549-3551.

[56] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 2012, 20(19): 21715-21721.

[57] Chen P, Ji W, Wei B Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates[J]. Applied Physics Letters, 2015, 107(24): 241102.

[58] Ko S W, Ting C L, Fuh A Y G, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal[J]. Optics Express, 2010, 18(4): 3601-3607.

[59] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10: 327-332.

[60] Wei B Y, Chen P, Hu W, et al. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask[J]. Scientific Reports, 2015, 5: 17484.

[61] Wu S T. Birefringence dispersions of liquid crystals[J]. Physical Review A, 1986, 33(2): 1270.

[62] Wang L, Lin X W, Liang X, et al. Large birefringence liquid crystal material in terahertz range[J]. Optical Materials Express, 2012, 2(10): 1314-1319.

[63] Wei B Y, Chen P, Ge S J, et al. Liquid crystal depolarizer based on photoalignment technology[J]. Photonics Research, 2016, 4(2): 70-73.

[64] Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light: Science & Applications, 2015, 4: e253.

[65] Ma L L, Li S S, Li W S, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals[J]. Advanced Optical Materials, 2015, 3(12): 1691-1696.

[66] Ma Y, Wei B, Shi L, et al. Fork gratings based on ferroelectric liquid crystals[J]. Optics Express, 2016, 24(6): 5822-5828.

[67] Ke Y, Liu Y, Zhou J, et al. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens[J]. Applied Physics Letters, 2016, 108(10): 101102.

陈鹏, 徐然, 胡伟, 陆延青. 基于光取向液晶的光场调控技术[J]. 光学学报, 2016, 36(10): 1026005. Chen Peng, Xu Ran, Hu Wei, Lu Yanqing. Beam Shaping Based on Photopatterned Liquid Crystals[J]. Acta Optica Sinica, 2016, 36(10): 1026005.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!