光学学报, 2016, 36 (10): 1026008, 网络出版: 2016-10-12   

涡旋光场的集成光子学操控方法 下载: 1148次

Integrated Photonic Methods for Manipulation of Optical Vortices
作者单位
中山大学光电材料与技术国家重点实验室, 广东 广州 510275
摘要
光学涡旋是一类围绕光轴具有螺旋相位项的圆柱光学模式。近年来,光学涡旋因其在光学和光子学的许多领域具有重要潜在应用而引起了广泛关注,其可能应用范围包括光通信、光信息处理、成像传感和量子信息等。与基于自由空间光学的方法相比,集成光子学的发展为操纵光学涡旋提供了更为有效的方法。对使用集成光子器件操纵光学涡旋的理论框架和最新技术进展进行了全面综述。
Abstract
Optical vortices are a variety of cylindrical modes that have spiral phase terms around the optical axis. In recent years, optical vortices have attracted wide interest because of their potential applications in many areas including optical communications, optical information processing, imaging sensing, and quantum information. Compared to approaches based on free space optics, integrated photonics provides more effective approaches for the manipulation of optical vortices. This paper reviews the theoretical framework and latest progress in such approaches.
参考文献

[1] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society of London Series A, 1909, 82(557): 560-567.

[2] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-125.

[3] Allen L, Beijersbergen M, Spreeuw R, et al. Orbital angulae momentum of light and the transformation of Laduerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[4] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6: 488-496.

[5] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

[6] Wang J, Liu J, Lü X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimensional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]. European Conference on Optical Communication, 2015: Th.2.5.4.

[7] Shu J H, Chena Z Y, Pu J X, et al. Tight focusing of partially coherent and radially polarized vortex beams[J]. Optics Communications, 2013, 295: 5-10.

[8] Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126-1131.

[9] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

[10] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

[11] Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift[J]. Optical and Quantum Electronics, 1999, 31(1): 1-12.

[12] Ding D S, Zhang W, Zhou Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble[J]. Physical Review Letters, 2015, 114(5): 050502.

[13] Han Y J, Liao G Q, Chen L M, et al. High-order optical vortex harmonics generated by relativistic femtosecond laser pulse[J]. Chinese Physics B, 2015, 24(6): 065602.

[14] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

[15] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

[16] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5): 321-327.

[17] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

[18] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.

[19] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[20] Snyder A W, Love J D. Optical waveguide theory[M]. London: Chapman and Hall, 1983.

[21] Wu C, Makino T, Glinski J, et al. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides[J]. Journal of Lightwave Technology, 1991, 9(10): 1264-1277.

[22] Jordan R H, Hall D G, King O, et al. Lasing behavior of circular grating surface-emitting semiconductor lasers[J]. Journal of the Optical Society of America B, 1997, 14(2): 449-453.

[23] Barlow G F, Shore A, Turnbull G A, et al. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser[J]. Journal of the Optical Society of America B, 2004, 21(12): 2142-2150.

[24] Scheuer J, Green W M J, DeRose G A, et al. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume[J]. Applied Physics Letters, 2005, 86(25): 251101.

[25] Scheuer J, Green W M, DeRose G A, et al. InGaAsP annular Bragg lasers: theory, applications, and modal properties[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476-484.

[26] Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams[J]. Optics Letters, 2011, 36(7): 1209-1211.

[27] Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination[J]. Journal of the Optical Society of America B, 2007, 24(9): 2178-2184.

[28] Liang G Z, Liang H K, Zhang Y, et al. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2013, 102(3): 031119.

[29] Fujita M, Baba T. Microgear laser[J]. Applied Physics Letters, 2002, 80(12): 2051-2053.

[30] Zhang Z Y, Dainese M, Wosinski L, et al. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling[J]. Optics Express, 2008, 16(7): 4621-4630.

[31] Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators[C]. 2013 IEEE Photonics Conference, 2013: 434-435.

[32] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

[33] Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers. Ⅰ. Coupled-mode equations[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 353-364.

[34] Huy K P, Morand A, Amans D, et al. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory[J]. Journal of the Optical Society of America B, 2005, 22(8): 1793-1803.

[35] Sun X K, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers[J]. Optics Express, 2007, 15(25): 17323-17333.

[36] Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity[J]. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253-1258.

[37] Zhu J B, Cai X L, Chen Y J, et al. Theoretical model for angular grating-based integrated optical vortex beam emitters[J]. Optics Letters, 2013, 38(8): 1343-1345.

[38] Yu S Y, Cai X L, Zhang N. High index contrast integrated optics in the cylindrical coordinate[C]. SPIE, 2015, 9372: 937203.

[39] Streifer W, Scifres D, Burnham R. Analysis of grating-coupled radiation in GaAs: GaAlAs lasers and waveguides -Ⅰ[J]. IEEE Journal of Quantum Electronics, 1976, 12(7): 422-428.

[40] Streifer W, Burnham R, Scifres D. Analysis of grating-coupled radiation in GaAs: GaAlAs lasers and waveguides -Ⅱ: blazing effects[J]. IEEE Journal of Quantum Electronics, 1976, 12(8): 494-499.

[41] Streifer W, Scifres D, Burnham R. Coupled wave analysis of DFB and DBR lasers[J]. IEEE Journal of Quantum Electronics, 1977, 13(4): 134-141.

[42] Hardy A, Welch D F, Streifer W. Analysis of second-order gratings[J]. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096-2105.

[43] Watson G N. A treatise on the theory of Bessel functions[M]. 2nd edition. Cambridge: Cambridge University Press, 1995.

[44] Strain M J, Cai X L, Wang J W, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 2014, 5: 4856.

[45] Liu J, Li S M, Zhu L, et al. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter[C]. European Conference on Optical Communication, 2015: 15636022.

[46] Moreno I, Davis J A, Ruiz I, et al. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating[J]. Optics Express, 2010, 18(7): 7173-7183.

[47] Zhu J B, Chen Y J, Zhang Y F, et al. Spin and orbital angular momentum and their conversion in cylindrical vector vortices[J]. Optics Letters, 2014, 39(15): 4435-4438.

[48] Li H L, Phillips D B, Wang X Y, et al. Orbital angular momentum vertical-cavity surface-emitting lasers[J]. Optica, 2015, 2(6): 547-552.

余思远. 涡旋光场的集成光子学操控方法[J]. 光学学报, 2016, 36(10): 1026008. Yu Siyuan. Integrated Photonic Methods for Manipulation of Optical Vortices[J]. Acta Optica Sinica, 2016, 36(10): 1026008.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!