光学学报, 2016, 36 (10): 1026015, 网络出版: 2016-10-12   

湍流大气中涡旋光束的光强分布及光学涡旋的漂移 下载: 1260次

Intensity Distribution and Optical Vortex Wander of Vortex Beams Propagating in Turbulent Atmosphere
作者单位
1 山东理工大学理学院, 山东 淄博 255049
2 山东师范大学物理与电子科学学院, 山东 济南 250014
摘要
数值模拟了拉盖尔-高斯涡旋光束在湍流大气中传输时的光强分布和光学涡旋的漂移。由模拟结果可知,当涡旋光束在湍流大气中传输时,光强分布由最初的环形结构变为平顶结构,最终在远场演化为高斯分布;光强廓线的演变过程与传输距离、湍流强度、湍流外尺度、涡旋光束拓扑荷数、束腰宽度以及光波长有关,与湍流内尺度无关。光学涡旋在接收面的不同位置处出现的频次满足高斯分布;随着传输距离的增加、湍流的增强或涡旋光束拓扑荷数的增加,光学涡旋的漂移范围增大且在不同位置处出现的频次偏离高斯分布;适当选择涡旋光束的束腰宽度会减小光学涡旋的漂移。
Abstract
The intensity distribution and the wander of optical vortices of Laguerre-Gaussian beams propagating in turbulent atmosphere are simulated numerically. The results indicate that intensity profiles of vortex beams experienced successive variation from annular structures to flattened-top profiles and finally to Gaussian profiles with the propagation. The variation is closely related with the propagation distance, the turbulence strength, the outer scale of turbulence, the number of topological charge, the width of beam waist and the wavelength of vortex beam. However, the variation is nothing to do with the inner scale of turbulence. The wandering behavior of optical vortices in the atmosphere is described by the occurrence number on a transverse plane. The results show that the occurrence number on the receiver plane follows Gaussian statistics. As the propagation distance, the turbulence strength, or the topological charge of the vortex beam increases, the Gaussian fitting curves become broader, and the statistics of vortex position tends to random distribution. In addition, choosing the suitable width of the vortex beam waist can reduce the wander of optical vortices.
参考文献

[1] Soskin M S, Vasnetsov M V. Singular optics [M]// Wolf E. Progress in optics. Amsterdam: Elsevier, 2001: 219-276.

[2] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

[3] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901.

[4] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 2008, 25(1): 225-230.

[5] Ge X L, Wang B Y, Guo C S. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence[J]. Journal of the Optical Society of America A, 2015, 32(5): 837-842.

[6] Zhang Y X, Tao C K. Wavefront dislocations of Gaussian beams nesting optical vortices in a turbulent atmosphere[J]. Chinese Optics Letters, 2004, 2(10): 559-561.

[7] Zhang Y X, Tang M X, Tao C K. Partially coherent vortex beams propagation in a turbulent atmosphere[J]. Chinese Optics Letters, 2005, 3(10): 559-561.

[8] Eyyuboglu H T. Propagation of higher order Bessel-Gaussian beams in turbulence[J]. Applied Physics B, 2007, 88(2): 259-265.

[9] Eyyuboglu H T, Sermutlu E, Baykal Y, et al. Intensity fluctuations in J-Bessel-Gaussian beams of all orders propagating in turbulent atmosphere[J]. Applied Physics B, 2008, 93: 605-611.

[10] Cai Y J, Eyyuboglu H T, Baykal Y. Propagation properties of anomalous hollow beams in a turbulent atmosphere[J]. Optics Communications, 2008, 281(21): 5291-5297.

[11] Zhu K C, Zhou G Q, Li X G, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320.

[12] 王涛, 蒲继雄, 陈子阳. 涡旋光束在湍流大气中的传输特性[J]. 光学学报, 2008, 28(s2): 82-86.

    Wang Tao, Pu Jixiong, Chen Ziyang. Propagation of vortex beams in a turbulent atmosphere[J]. Acta Optica Sinica, 2008, 28(s2): 82-86.

[13] Wang T, Pu J X, Chen Z Y. Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere[J]. Optics Communications, 2009, 282(7): 1255-1259.

[14] Eyyuboglu H T, Baykal Y, Sermutlu E, et al. Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media[J]. Journal of the Optical Society of America A, 2009, 26(2): 387-394.

[15] Cai Y J, Eyyuboglu H T, Baykal Y. Propagation of various dark hollow beams through an optical system in a turbulent atmosphere[J]. Optics and Lasers in Engineering, 2010, 48(10): 1019-1026.

[16] Wang F, Cai Y J, Eyyuboglu H T, et al. Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere[J]. Progress in Electromagnetics Research, 2010, 103: 33-56.

[17] Eyyuboglu H T, Baykal Y, Ji X. Scintillations of Laguerre Gaussian beams[J]. Applied Physics B, 2010, 98(4): 857-863.

[18] Wang F, Cai Y, Eyyuboglu H T, et al. Partially coherent elegant Hermite-Gaussian beam in turbulent atmosphere[J]. Applied Physics B, 2011, 103(2): 461-469.

[19] Wang D D, Wang F, Cai Y J, et al. Evolution properties of the complex degree of coherence of a partially coherent Laguerre-Gaussian beam in turbulent atmosphere[J]. Journal of Modern Optics, 2012, 59(4): 372-380.

[20] Lukin V P, Konyaev P A, Senninkov V A. Beam spreading of vortex beams propagating in turbulent atmosphere[J]. Applied Optics, 2012, 51(10): C84-C87.

[21] Liu X L, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam[J]. Optics Letters, 2013, 38(24): 5323-5326.

[22] Gu Y L. Statistics of optical vortex wander on propagation through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2013, 30(4): 708-716.

[23] Cui Q R, Li M, Yu Z Y. Influence of topological charge on random wandering of optical vortex propagating through turbulent atmosphere[J]. Optics Communications, 2014, 329: 10-14.

[24] Lukin I P. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere[J]. Applied Optics, 2014, 53(15): 3287-3293.

[25] Chen R, Liu L, Zhu S J, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 2014, 22(2): 1871-1883.

[26] Xu Y G, Li Y D, Zhao X L. Intensity and effective beam width of partially coherent Laguerre-Gaussian beams through a turbulent atmosphere[J]. Journal of the Optical Society of America A, 2015, 32(9): 1623-1630.

[27] 葛筱璐, 王本义, 国承山. 涡旋光束在湍流大气中的扩展[J]. 光学学报, 2016, 36(3): 0301002.

    Ge Xiaolu, Wang Benyi, Guo Chengshan. Beam broadening of vortex beams propagating in turbulent atmosphere[J]. Acta Optica Sinica, 2016, 36(3): 0301002.

[28] 王英俭. 激光大气传输及其位相补偿的若干问题探讨[D]. 合肥: 中国科学院安徽光学精密机械研究所, 1996.

    Wang Yingjian. Some study on the laser propagation in the atmosphere and its compensation[D]. Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 1996.

[29] Dennis M R. Rows of optical vortices from elliptically perturbing a high-order beam[J]. Optics Letters, 2006, 31(9): 1325-1327.

[30] Ricci F, Lffler W, van Exter M P. Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer[J]. Optics Express, 2012, 20(20): 22961-22975.

[31] Roux F S. How to distinguish between the annihilation and the creation of optical vortices[J]. Optics Letters, 2013, 38(19): 3895-3898.

[32] 陆璇辉, 黄慧琴, 赵承良, 等. 涡旋光束和光学涡旋[J]. 激光与光电子学进展, 2008, 45(1): 50-56.

    Lu Xuanhui, Huang Huiqin, Zhao Chengliang, et al. Optical vortex beams and optical vortices[J]. Laser & Optoelectronics Progress, 2008, 45(1): 50-56.

[33] Fried D L, Vaughn J L. Branch cuts in the phase function[J]. Applied Optics, 1992, 31(15): 2865-2882.

[34] Fried D L. Branch point problem in adaptive optics[J]. Journal of the Optical Society of America A, 1998, 15(10): 2759-2768.

[35] Knepp D L. Multiple phase-screen calculation of the temporal behavior of stochastic waves[J]. Proceedings of the IEEE, 1983, 71(6): 722-737.

[36] Frehlich R. Simulation of laser propagation in a turbulent atmosphere[J]. Applied Optics, 2000, 39(3): 393-397.

葛筱璐, 魏功祥, 刘晓娟, 国承山. 湍流大气中涡旋光束的光强分布及光学涡旋的漂移[J]. 光学学报, 2016, 36(10): 1026015. Ge Xiaolu, Wei Gongxiang, Liu Xiaojuan, Guo Chengshan. Intensity Distribution and Optical Vortex Wander of Vortex Beams Propagating in Turbulent Atmosphere[J]. Acta Optica Sinica, 2016, 36(10): 1026015.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!