光学学报, 2016, 36 (6): 0614001, 网络出版: 2016-06-06   

2.16 m望远镜高分辨率光谱仪的天文光学频率梳

Astronomical Laser Frequency Comb for High Resolution Spectrograph of a 2.16-m Telescope
吴元杰 1,2,3,*叶慧琪 1,2韩建 1,2邹璞 4傅凌统 4肖东 1,2
作者单位
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
4 Menlo Systems公司, 马丁斯里德 82152, 德国
摘要
介绍了应用于我国兴隆观测站2.16 m望远镜高分辨率光谱仪的天文光学频率梳。采用掺镱光纤激光频率梳作为源光梳,通过模式滤波使模式间隔达到25 GHz,与天文光谱仪的分辨率相匹配。光谱展宽和平滑后,光谱覆盖可见光范围达到270 nm以上,光谱平滑度可长期保持在1 dB范围内,边模抑制比达到42 dB。该天文光学频率梳的视向速度理论定标精度可达cm/s量级,使寻找系外类地行星乃至直接测量宇宙膨胀速度成为可能。
Abstract
An astronomical laser frequency comb (astro-comb), which will be applied as a calibrator on the high resolution spectrograph of the 2.16-m telescope in Xinglong Observatory, is introduced. The astro-comb is based on an ytterbium-doped fiber laser frequency comb. By mode filtering, the mode spacing of the comb is increased to 25 GHz, which matches the resolution of the astronomical spectrograph. After spectral broadening and flattening, the spectrum span increases to more than 270 nm in visible range, the spectrum flatness maintains within 1 dB for a long time, and the side mode suppression ratio reaches 42 dB. The theoretical calibration precision of the radial velocity for the astro-comb reaches cm/s level, which meets the requirements for searching the earth-like extrasolar planets and directly detecting the acceleration of the cosmic expansion.
参考文献

[1] Bouchy F, Isambert J, Lovis C, et al.. Charge transfer inefficiency effect for high-precision radial velocity measurements[J]. EAS Publications Series, 2009, 37: 247-253.

[2] Diddams S A, Jones D J, Ye J, et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105.

[3] Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

[4] 闫露露, 张颜艳, 赵文宇, 等. 186 MHz低幅度噪声掺铒光纤飞秒激光器[J]. 中国激光, 2014, 41(8): 0802004.

    Yan Lulu, Zhang Yanyan, Zhao Wenyu, et al.. 186 MHz low amplitude noise erbium-doped-fiber femtosecond laser[J]. Chinese J Lasers, 2014, 41(8): 0802004.

[5] Li C H, Benedick A J, Fendel P, et al.. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm·s-1[J]. Nature, 2008, 452(7187): 610-612.

[6] Steinmetz T, Wilken T, Araujo-Hauck C, et al.. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[7] Wilken T, Curto G L, Probst R A, et al.. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 2012, 485(7400): 611-614.

[8] 张志刚. 高重复频率飞秒光纤激光技术进展[J]. 光学学报, 2011, 31(9): 0900130.

    Zhang Zhigang. Advances in high repetition rate femtosecond fiber lasers[J]. Acta Optica Sinica, 2011, 31(9): 0900130.

[9] Li C H, Glenday A G, Phillips D F, et al.. Green astro-comb for HARPS-N[C]. SPIE, 2012, 8446: 84468X.

[10] Glenday A G, Li C H, Langellier N, et al.. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph[J]. Optica, 2015, 2(3): 250-254.

[11] Probst R A, Curto G L, Avila G, et al.. A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS[C]. SPIE, 2014, 9147: 91471C.

[12] Murphy M, Udem T, Holzwarth R, et al.. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs[J]. Monthly Notices of the Royal Astronomical Society, 2007, 380(2): 839-847.

[13] Steinmetz T, Wilken T, Araujo-Hauck C, et al.. Fabry-Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth[J]. Applied Physics B, 2009, 96(2-3): 251-256.

[14] Probst R A, Steinmetz T, Wilken T, et al.. Nonlinear amplification of side-modes in frequency combs[J]. Optics Express, 2013, 21(10): 11670-11687.

[15] Stark S P, Steinmetz T, Probst R A, et al.. 14 GHz visible supercontinuum generation: Calibration sources for astronomical spectrographs[J]. Optics Express, 2011, 19(17): 15690-15695.

[16] Stark S P, Travers J C, Russell P S J. Extreme supercontinuum generation to the deep UV[J]. Optics Letters, 2012, 37(5): 770-772.

[17] Chang G, Li C H, Phillips D F, et al.. Toward a broadband astro-comb: Effects of nonlinear spectral broadening in optical fibers[J]. Optics Express, 2010, 18(12): 12736-12747.

[18] Probst R A, Steinmetz T, Wilken T, et al.. Spectral flattening of supercontinua with a spatial light modulator[C]. SPIE, 2013, 8864: 88641Z.

[19] Wilken T. Calibrating astronomical spectrographs with frequency combs[D]. Munich: LMU Munich, 2010.

[20] 杨聪, 韩建, 吴元杰, 等. 动态扰模抑制多模光纤散斑的理论及实验研究[J]. 激光与光电子学进展, 2015, 52(9): 090602.

    Yang Cong, Han Jian, Wu Yuanjie, et al.. Theoretical and experimental study on suppression of speckle from a multimode optical fiber by dynamic scrambling[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090602.

吴元杰, 叶慧琪, 韩建, 邹璞, 傅凌统, 肖东. 2.16 m望远镜高分辨率光谱仪的天文光学频率梳[J]. 光学学报, 2016, 36(6): 0614001. Wu Yuanjie, Ye Huiqi, Han Jian, Zou Pu, Fu Lingtong, Xiao Dong. Astronomical Laser Frequency Comb for High Resolution Spectrograph of a 2.16-m Telescope[J]. Acta Optica Sinica, 2016, 36(6): 0614001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!